• 제목/요약/키워드: Sea water desalination

검색결과 48건 처리시간 0.025초

UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가 (Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment)

  • 양근모;임동훈;김준하;정형호
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권1호
    • /
    • pp.59-68
    • /
    • 2013
  • 본 연구에서는 한외여과막과 역삼투압막으로 이루어진 해수담수화장치를 구성하였다. 해수를 취수하여 디스크필터와 한외여과막을 이용한 전처리설비를 통과시켜 생산한 전처리수의 $SDI_{15}$와 탁도를 측정하여 역삼투압해수담수설비에 적합함을 밝혔다. 역삼투압해수담수설비의 부산물인 브라인을 전처리수와 혼합하여 역삼투압해수담수설비의 입구농도를 변화시켰다. 농도 변화실험에서, 해수농도가 역삼투압해수담수설비의 성능에 끼치는 영향을 실험으로 구하였다. 염배제율, 회수율, 생산수의 수질은 입구농도에 따라 많은 변화가 있었으며, 에너지소비량도 입구농도에 거의 선형적으로 상승하는 것을 실험으로 구하였다.

이중관 삼중흐름 열교환에 의한 LNG 기화시스템의 열적 해석 (Thermal Analysis of Double-tube Triple-flow LNG Vaporization System)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.839-844
    • /
    • 2003
  • As sea water is being used as only heat source of LNG open rack vaporizer, serious problem has been risen in LNG terminal by the lack of heating energy source for LNG vaporization due to the temperature drop of sea water in winter. In this paper the new double-tube triple-flow(TRIDEX) vaporizer was suggested to solve the problem and the system was thermally analysed. LPG(liquefied petroleum gas) and sea water were introduced as the heat sources for LNG TRIDEX vaporizer. The flow patterns of TRIDEX vaporizer are as follows: LNG flow in the annular space, PG(petroleum gas) flow in the inner tube, and sea water flow in the outside of the double pipe. The overall LNG vaporization system was consisted of TRIDEX vaporizer, LPG vaporizer and PG heater. LPG in TRIDEX was directly dispersed in the sea water desalination unit, so that LPG turns to be gas phase for the reuse in TRIDEX vaporizer. New TRIDEX vaporizer system for LNG evaporation was analysed as much more effective than the present single tube one in the case of colder temperature of sea water in winter.

A study on boron removal for seawater desalination using the combination process of mineral cluster and RO membrane system

  • Cho, Bong-Yeon;Kim, Hye-Won;Shin, Yee-Sook
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.285-289
    • /
    • 2015
  • Complicated and expensive seawater desalination technology is a big challenge in boron removal process. Conventional seawater desalination process of coagulation utilized for pre-treatment is difficult to remove boron. Boron can be removed more effectively in Reverse Osmosis (RO) process than any other processes. In this study, a coagulant with the name Mineral Cluster was examined its boron removal ability. Boron removal efficiency of Mineral Cluster depended on pH value and Mineral Cluster dosage. Desalination process combines the pre-treatment process with Mineral cluster diluted at the ratio of 1:2500 and the RO membrane process. The original sea water could be desalinated to drinking water quality, 1 mg/L, without any pH adjustments. Therefore, if the Mineral cluster is added without any other chemicals for adjusting pH, the desalination process would be much safer, efficient and economical.

태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구 (Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination)

  • 주홍진;전용한;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

태양에너지 해수담수화시스템 실증 (Demonstration study on Desalination System using Solar energy)

  • 김정배;주홍진;윤응상;주문창;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.27-33
    • /
    • 2007
  • In this research, to develop the practical application system of fresh water generation system with plate-type fresh water generator using low pressure evaporation method is the main object, and to do that, this study used the evacuated solar collector with operating range of about $50-85^{\circ}C$ as thermal energy source and solar photovoltaic as electric energy source. To achieve that object, this study set up the demo-plant, then estimated and analyzed the usefulness, the safety, and the reliability through pre-tests during short time ahead of the long-time operation. This study showed that the pumps, which are including sea water supply, ejector, hot water supply, and fresh water pumps, were operated one after another. And, the fresh water yield was closely related with the solar irradiance and lower supply temperature of hot water was revealed more reasonable for the solar energy desalination system. That is due to the insufficient area than the solar collector area being required that was estimated through the performance tests of the fresh water generator.

전력망 연동형 해수담수화 플랜트의 운영비용 절감효과 (The Cost Reduction Effect of Gridable Sea Water Reverse Osmosis Desalination Plant)

  • 이종현;최중인;배시화;고원석
    • 조명전기설비학회논문지
    • /
    • 제25권1호
    • /
    • pp.64-69
    • /
    • 2011
  • A novel concept of the gridable desalination plant is to provide an operation management to enable an electricity plant operation cost reduction. Adjusting recovery rate responded to electricity price, an electricity plant operation cost can be saved. To show a suggested approach, the data of 10 [MIGD](Million Imperial Gallons per Day) SWRO testbed are used. The result shows that total cost reduction rate is calculated about 1.6[%] of annual total electric plant operation cost.

태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가 (Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination)

  • 주홍진;곽희열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF

국내 적용을 위한 해수 담수화 경제성 분석 (An Economic Analysis of Desalination for Potential Application in Korea)

  • 박노석;박희경;박미현;김병덕
    • 상하수도학회지
    • /
    • 제12권3호
    • /
    • pp.48-54
    • /
    • 1998
  • Korea becomes one of the countries which suffer from water shortage. It is expected that its water shortage in the early 2000's will be more than 10% of the annual demand. The shortage problem is more serious in the coastal areas where many industry complex locate. To solve the shortage problem, seawater desalination gets more attention as an alternative water supply source since Korea is surrounded by sea on its three sides. For potential application of seawater desalination in Korea, an economic analysis was conducted using cost data for the plants in the Middle Ease areas, The United states and others. The study is to provide a basis for the government to establish a strategy for promoting seawater desalination in Korea. It is discussed that the Reverse Osmosis (RO) process gets cheaper over times than the thermal processes of Multi-stage Flash Distillation (MSF) and Multi Effect Distillation (ME), especially in case where the capacity is less than about 50,000 ton/day. The unit cost of RO seawater is analyzed about US$1.35/ton in 1990 price. Since the Desalination plant can be operated regardless of weather conditions, industries in Korea's coastal areas which suffer from frequent droughts and water shortages are recommended to look into this option with more attention.

  • PDF

간척지, 해안가 근처의 농업용수 공급을 위한 기수담수 시스템 연구

  • 홍민
    • 한국농공학회지
    • /
    • 제57권4호
    • /
    • pp.16-24
    • /
    • 2015
  • Desalination technology is a process to remove salt from water. There are three classified In accordance with the concentration of salt The concentration of sea water 15,000~50,000mg/l, brackish water 1,500~15,000mg/l, desalination less than 500mg/l.. In general, salt to remove for using a pre-treatment UF filter, but this study is new pre-treatment technology RO Membrane process technology Suspended particulate matter is said most were treated at the pre-treatment equipment, wheat affluent particulate material was removed from the MF filter. Influent SS 16.2mg /l The treatment was effective in treatment 0.05mg /l of 99% is removed. COD is reduced to 60% in the pre-treatment device, after treatment was reduced to 30% RO membrane. Influent COD 10.2mg/l treatment was removed 1.9mg/l. The removal rate is 81.9%. Desalination removes the ionic substances in the RO Membrane. Influent EC $978.8{\mu}s/cm$ and treatment showed a result of $18.7{\mu}s/cm$.