• Title/Summary/Keyword: Sea surface temperature (SST)

Search Result 346, Processing Time 0.019 seconds

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

VARIATIONS OF SEA SURFACE TEMPERATURE BETWEEN JEJU AND MOGPO AND BETWEEN JEJU AND WANDO (제주와 목포, 제주와 완도간의 표면수온 변화)

  • Rho, Hong Kil;Kim, Kuh
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 1983
  • A series of sheps-of-opportunity sea sryface temperature (SST) measurement beween Jeju and Wando during a period from December 1979 through June 1981 produced following results. 1. A sihnificantly warm water appeared south of Chuja Island and Cheongsan Island during Island. It is suggested that this water represents a current entering the Jeju Strait from the west. Direction of this currint in other seasons is not certain. 2. Coastal waters were found north of the Cheongsan Island and Bogil Islhnd throughout the measurement period. In February these waters sometimes reached as far as Chuja Island to south. 3. Frequently thermal fronts were observed near the Chuja Island and the Cheongsan Island. 4. In summer cold waters appeared north of the Chuja Island and Changsu Island. Intrusion of cold bottom water from offshore and its subsequent vertical mixing due to strong tidal current are probably reponsible for this appearance. 5. Cold waters also appeared locally around islands and in ghe Jeju Harbor in spring and summer. 6. North-south SST difference reached 8-9$^{\circ}C$ in winter which is the annual maximum. 7. Annual range of SST varies from 12-14$^{\circ}C$ in the central part of the Jeju Strait to 16-20$^{\circ}C$ in coastal waters to north. The highest SST appeared everywhere in September but the lowest one did not appesr in the same month of year.

  • PDF

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.

Species Composition and Assemblage Structure of Fish Collected by Set Net at the Coastal Waters of Goseong in Gangwon-do, Korea (강원도 고성연안에서 정치망으로 채집된 어류 종조성과 군집구조)

  • Lee, Soo Jeong;Yang, Jae-Hyeong;Seo, Young Il;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.33 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • In order to understand the seasonal variations of species composition of fish in the Goseong, middle East Sea of Korea, we surveyed fish fauna using set net during 2 years. In this study, a total of 77 taxa belonging to 40 families were collected and 75 species were identified. The dominant family were Tetraodontidae and Pleuronectidae, and the dominant species were Arctoscopus japonicus, Konosirus punctatus, Stephanolepis cirrhifer, Thamnaconus modestus, and Trachurus japonicus. The results of the hierarchical clustering using the number of individuals of collected species showed that they are divided into three seasonal groups: Group A (Jan.~Apr.), Group B (May~Jun., Nov.~Dec.), Group C (Jul.~Oct.). The sea surface temperature (SST) was higher than the results of previous studies in winter and spring, and species composition in spring have changed from cold-water species to the warm-water species, recently. The species composition has become similar to the that of southern Gangwon-do regions (Samcheok and Gangneung) of the previous studies. The species diversity of family Tetraodontidae has increased, which is estimated to have an effect on increase in SST and the quantity of entering the East Sea. Therefore, we assumed that the change of species composition is related to the extension of northern distribution limits and survival temperature, and abundant preys. Therefore, it is necessary that an efficient resource management policy as well as the ways of commercially use of migratory warm-water fish, rapidly.

A study on the atmospheric response to a SST anomaly over the Equatorial Eastern Pacific Ocean with the horizontally fine resolution AGCM (수평조밀격자 GCM을 이용한 적도 태평양상의 SST anomaly에 대한 대기 반응 연구)

  • Moon, Sung-Eui;Ahn, Joong-Bae;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.403-411
    • /
    • 1995
  • The atmospheric responses to a Sea Surface Temperature Anomaly(SSTA) over the equatorial eastern Pacific Ocean have been investigated using the horizontally fine resolution model based on OSU 2-layer Atmospheric General Circulation Model(AGCM). The SSTAS daring the peak phase of 1982-83 El Nino have been applied to the model as the boundary conditions of the experiment. The model simulates the eastward movement of the rising branch of the Walker circulation. That is, the major features associated with the El Nino such as the increase of the precipitation rate over the center of the Pacific and decrease over the Indonesia, and the 500hPa geopotential height anomaly in the middle latitude are properly describes in the fine resolution model experiment. The model results indicate that this horizontally fine resolution UM can successfully simulate the ENSO anomalies and be more effectivelly used for the study of the climate and the climate changes.

  • PDF

A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation (MJO의 다중스케일 분석을 통한 수십년 변동성)

  • Lee, Sang-Heon;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2011
  • A new multi-timescale analysis method, Ensemble Empirical Mode Decomposition (EEMD), is used to diagnose the variation of the MJO activity determined by 850hPa and 200hPa zonal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data for the 56-yr period from 1950 to 2005. The results show that MJO activity can be decomposed into 9 quasi-periodic oscillations and a trend. With each level of contribution of the quasi-periodic oscillation discussed, the bi-seasonal oscillation, the interannual oscillation and the trend of the MJO activity are the most prominent features. The trend increases almost linearly, so that prior to around 1978 the activity of the MJO is lower than that during the latter part. This may be related to the tropical sea surface temperature(SST). It is speculated that the interdecadal change in the MJO activity appeared in around 1978 is related to the warmer SST in the equatorial warm pool, especially over the Indian Ocean.

Temporal and Spatial Variation of SST Related to the Path of Typhoons around the Korean Waters in Summer (태풍 통과에 따른 한국 연근해 수온 변동)

  • 서영상;김동순;김복기;이동인;김영섭;김일곤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.627-636
    • /
    • 2002
  • While typhoons were passing by the coastal and offshore waters around the Korean peninsula, the variations of the sea surface temperature (SST) were studied. To study on the variation, the data related to the 22 typhoons among 346 typhoons which occurred in the western Pacific during 1990∼1999, daily measured field SSTs at coastal and offshore, and imageries from advanced very high resolution radiometer on NOAA satellite during 1990∼1999 were used. The average variations of the SSTs were -0.9℃ at coastal waters and -2℃ at offshore around the Korean peninsula while the typhoons were passing by. In very near coastal waters from the land, the SST was not changed because the bottom depth of the coastal waters was shallower than the depth of thermalcline, while the typhoon was passing. The temporal and spatial variation of SSTs at coastal waters in summer were depended on the various types of the typhoons'paths which were passing through the Korean peninsula. When a typhoon passed by the western parts including the Yellow Sea of the Korean peninsula upwelling cold water occurred along the eastern coastal waters of the peninsula. The reason was estimated with the typhoon that was as very strong wind which blew from south toward north direction along the eastern shore of the peninsula, led to the Ekman transport from near the eastern coastal area toward the offshore. While cold water was occurring in the eastern coast, a typhoon passed over the coastal area, the cold water disappeared. The reason was estimated that the cold water was mixed up with the surrounding warm water by the effect of the typhoon. While a cold water was occurring in the eastern coast, a typhoon passed by the offshore of the eastern coast, there were the increasing of the SST as well as the disappearing of the cold water. While a typhoon was passing by the offshore of the eastern coast, the cold water which resulted from the strong tidal current in the western coast of the peninsula was horizontally spread from the onshore to the offshore. We think that the typhoon played the role of the very strong wind which was blowing from north toward south. Therefore, the Ekman transport occurred from the onshore toward the offshore of the western coast in the Korean peninsula.

Variation of Tidal Front in the Southwestern Sea of Korea (한국 남서해역 조사전선의 변화)

  • 조양기;최병호;정홍화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • To investigate the variation of tidal front in the southwestern sea of Korea, tidal currents were simulated. Tidal front proposed by a criterion parameter (log H/U$^3$)=1.5-2.0 was found further offshore by about 30-50 km in spring tide than in neap tide. This variation is comparable with the observed about 20-60km by satellite image of sea surface temperature (SST). Observed front by satellite is further offshore by about 10-30km than calculated region in southwestern region.

  • PDF

Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events (영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성)

  • Kim, Ji-Eon;Kwon, Tae-Yong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.