• Title/Summary/Keyword: Sea surface temperature

Search Result 1,156, Processing Time 0.029 seconds

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

A Study on the Fuzzy Controller for an Unmanned Surface Vessel Designed for Sea Probes

  • Park, Soo-Hong;Kim, Jong-Kwon;Lee, Won-Boo;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.586-589
    • /
    • 2005
  • Recently, the applications of unmanned system are steadily increasing. Unmanned automatic system is suitable for routine mission such as reconnaissance, environment monitoring, resource conservation and investigation. Especially, for the ocean environmental probe mission, many ocean engineers had scoped with the routine and even risky works. The unmanned surface vessel designed for sea probes can replace the periodic and routine missions such as water sampling, temperature and salinity measuring, etc. In this paper, an unmanned surface vessel was designed for ocean environmental probe missions. A classical and an adaptive fuzzy control system were designed and tested for the unmanned surface vessel. The design methodologies and performance of the surface vessel and fuzzy control algorithm were illustrated and verified with this unmanned vessel system designed for sea probes.

  • PDF

Distribution of Water Temperature and Common Squid Todarodes pacificus Paralavae around Korean Waters in 2013, 2014 (2013-2014년 한국주변해역 수온과 살오징어 유생분포)

  • Kim, Yoon-Ha;Lee, Chung Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Field observation for oceanic conditions and paralarvae of the common squid, Todarodes pacificus in Korean waters were sampled with the Bongo net (diameter: 60 cm, mesh size: $333{\mu}m$) by using oblique tow method with the oceanographic research vessel (Tamgu 12 and Tamgu 20) around Korean waters (middle of the Yellow Sea, northern part of the East China Sea, East Sea) in 2013 and 2014 was carried out. The observation in the Yellow Sea and the northern part of the East China Sea was done in August, 2013 and in the East Sea it was repeated at seven times from June, 2013 to September, 2014. The paralarvae in August of 2013 was not found in the Yellow Sea and one paralarvae was found in the northern part of the East China Sea. In the East Sea, 39 paralarvae during whole observation period were found, mantle length of paralarvae was from 1.7 to 13.5 mm. Surface water temperature in the Yellow Sea was $30^{\circ}C$, and cold water mass lower than $10^{\circ}C$ was occupied in the deep layer than 30 m. In the northern part of the East China Sea, surface water temperature was $31^{\circ}C$, and higher water temperature above $20^{\circ}C$ was found in deeper than 50 m. In the East Sea, optimum temperature for survival, $15-24^{\circ}C$, was existed shallower than 75 m.

Temporal and Spatial Variations of Marine Meteorological Elements and Characteristics of Sea Fog Occurrence in Korean Coastal Waters during 2013-2017 (2013~2017년 연안해역별 해양기상요소의 시·공간 변화 및 해무발생시 특성 분석)

  • Park, So-Hee;Song, Sang-Keun;Park, Hyeong-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study investigates the temporal and spatial variations of marine meterological elements (air temperature (Temp), Sea Surface Temperature (SST), and Significant Wave Height (SWH)) in seven coastal waters of South Korea, using hourly data observed at marine meteorological buoys (10 sites), Automatic Weather System on lighthouse (lighthouse AWS) (9 sites), and AWS (20 sites) during 2013-2017. We also compared the characteristics of Temp, SST, and air-sea temperature difference (Temp-SST) between sea fog and non-sea-fog events. In general, annual mean values of Temp and SST in most of the coastal waters were highest (especially in the southern part of Jeju Island) in 2016, due to heat waves, and lowest (especially in the middle of the West Sea) in 2013 or 2014. The SWH did not vary significantly by year. Wind patterns varied according to coastal waters, but their yearly variations for each coastal water were similar. The maximum monthly/seasonal mean values of Temp and SST occurred in summer (especially in August), and the minimum values in winter (January for Temp and February for SST). Monthly/seasonal mean SWH was highest in winter (especially in December) and lowest in summer (June), while the monthly/seasonal variations in wind speed over most of the coastal waters (except for the southern part of Jeju Island) were similar to those of SWH. In addition, sea fog during spring and summer was likely to be in the form of advection fog, possibly because of the high Temp and low SST (especially clear SST cooling in the eastern part of South Sea in summer), while autumn sea fog varied between different coastal waters (either advection fog or steam fog). The SST (and Temp-SST) during sea fog events in all coastal waters was lower (and more variable) than during non-sea-fog events, and was up to -5.7℃ for SST (up to 5.8℃ for Temp-SST).

Mean Characteristics of Temperature, Salinity and Chlorophyll-α at the Surface Water in the Northern East China Sea (동중국해 북부 해역 표층의 평균적 해황과 chlorophyll-α의 분포)

  • Choi, Yong-Kyu;Suh, Young-Sang;Seong, Ki-Tack;Yoon, Won-Duk;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • In order to investigate the effect of inflow of Yangze river on the distribution of chlorophyll-${\alpha}$, the results of serial oceanographic observation during 2000-2005 were used. The oceanographic conditions in the northern East China Sea is influenced by the Tsushima Warm Current and low saline water derived from the Yangze river. The distributions of these water masses vary significantly by the season in the northern East China Sea. The sea surface temperature and salinity were stable and concentrations of chlorophyll-${\alpha}$ were low in the eastern part of $126^{\circ}E$. On the contrary, the salinity was significantly influenced by the low saline water derived from Yangze river with the high concentrations of chlorophyll-${\alpha}$. It is suggested that the low saline water inflowed from the Yangze river affects high concentrations of chlorophyll-${\alpha}$ in the northern East China Sea in summer.

Seasonal Cycle of Sea Surface Temperature in the East Sea and its Dependence on Wind and Sea Ice

  • Park, Kyung-Ae;Chung, Jong-Yul;Kim, Kuh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.618-620
    • /
    • 2003
  • Harmonics of sea surface temperature (SST) in the East Sea and their possible causes are examined by analyzing NOAA/AVHRR data, SSM/I wind speeds, NSCAT wind vectors, and NCEP heat flux data. Detailed spatial structures of amplitudes and phases of the seasonal cycles and their contributions to the total variance of SST have quantitatively. The Subpolar front serves as a boundary between regions of high annual amplitudes (${\geq}$10$^{\circ}$C) in the cold continental region and low amplitudes (${\leq}$10$^{\circ}$C) in the Tsushima Warm Current region. The low phase center of annual cycle is located over a seamount at 132.2$^{\circ}$E, 41.7$^{\circ}$N south of Vladivostok. Semi-annual amplitudes are significantly large leaching over 20% of the annual amplitudes in the Tatarskiy Strait and along the continental shelf off Russian coast in fall and spring, but its forcings are substantially annual. We have shown that fall cooling is attributed by direct and local wind forcing, while spring cooling is remotely forced by cold waters from sea ices in the Tatarskiy Strait.

  • PDF

Occurrence Characteristics of Sea Breeze in the Gangneung Region for 2009~2018 (강릉지역 2009~2018년 해풍 발생 특성)

  • Hwang, Hyewon;Eun, Seung-Hee;Kim, Byung-Gon;Park, Sang-Jong;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.221-236
    • /
    • 2020
  • The Gangneung region has the complicated geographical characteristics being adjacent to East Sea and Taeback mountains, and thus sea breeze could play an important role in local weather in various aspects. This study aims to understand overall characteristics of sea breeze largely based on long-term (2009~2018) ground-based observation data. We also propose a selection criteria of sea breeze occurrence day; 1) daily precipitation is less than 10 mm, 2) surface wind direction is 0~110° (northerly to easterly) for more than 3 hours during the daytime, 3) wind direction is 110~360° for more than 3 hours during the nighttime, and 4) land and sea temperature difference is positive during the daytime, 5) sea and land sea-level pressure difference is more than 0.5 hPa. As a result, a total of 595 days was selected for the past 10 years. The occurrence of sea breeze is the highest in late Spring to early Summer (May to June). The passage time of sea breeze at the inland station (1.6 km farther inland) is one hour later than the coastal station. On the typical sea breeze event of April 12, 2019, the passage speed and duration of sea breeze was 15 km hr-1 and about 9 hours, respectively, with its depth of about 500 m and its head swelling. The current results emphasize the critical role of sea breeze in forecasting surface temperature and wind, and contribute to relieve heat wave especially in summer in the Yeongdong region.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Change the Annual Amplitude of Sea Surface Temperature due to Climate Change in a Recent Decade around the Korean Peninsula

  • Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.233-241
    • /
    • 2020
  • We examined long-term variations in sea surface temperature (SST) and annual amplitudes of SST around the Korean Peninsula. Two SST data sets with data periods of approximately 51 years and longer than 100 years, respectively, were obtained from the National Institute of Fisheries Science and Japan Meteorological Agency. SST of Korean waters clearly increased during last 51 years (1968-2018), which was 2.5 times higher than the global trend. This significant increasing trend was caused by the dominant increasing SST trend during winter. However, a negative and positive SST anomaly frequently appeared during winter and summer, respectively, in a recent decade. These features of seasonal SST variation have changed the annual amplitude of SST, and resulted in a drastically increasing trend after 2009. Using the longer SST data set, it was revealed that the decreasing SST trend in winter began in the 2000s and the increasing SST trend in summer bagan in the 1990s. During a recent decade, there was a distinctive SST increase in summer, whereas a clear decrease in winter. In summary, the annual amplitude of SST around the Korean Peninsula significantly changed from a decreasing trend to an increasing trend during a recent decade.

Relationship between the Tropical Sea Surface Temperature Distribution and Initiation Timing of the Typhoon Season in the Northwestern Pacific (열대 해수면 온도 분포와 북서태평양 태풍의 계절적 활동 시작일 변동 사이의 관련성)

  • Kim, Donghee;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • This study examined the relationship between the initiation timing typhoon season in the Northwestern Pacific and the tropical sea surface temperature (SST) using a numerical simulation. The initiation timing of the typhoon season is closely associated with SSTs over the Indian Ocean (IO) and the eastern Pacific (EP) in the preceding winter and early-spring. The experiment based on the Weather and Research Forecast (WRF) model showed that the start date of the typhoon season is delayed for about one month when the SSTs over the IO and the EP increase in the preceding winter. The forced tropical SST pattern induces anticyclonic anomalies in the Northwestern Pacific, which is an unfavorable condition for typhoon development, and hence it could delay the initiation of the typhoon season.