• Title/Summary/Keyword: Sea flow change

Search Result 141, Processing Time 0.026 seconds

Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (조류 흐름을 고려한 해양지반 수리저항성능 실험기 개발)

  • Kang, Kyoung-O;Jeong, Hyun-Chel;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1366-1369
    • /
    • 2010
  • Along with the increasing need of sea development, the hydraulic stability of seabed structure on a soft seafloor ground is becoming an issue in the course of seaside development recently. However, the movement and hydraulic resistance or hydraulic stability of seafloor ground are mutually coupled with various phenomena, and there has been no clear proof for the issue, which makes it difficult to forecast. Furthermore, most researches are focused on hydraulic variables and the conditions of marine external force, while there have been few researches into the assessment in consideration of the type of a seafloor ground and the geotechnical characteristics. In addition, according to the periodic change of the flow direction, possible changes in hydraulic resistance performance of the seafloor deserves all the recognition. But there is no way to measure the hydraulic unstability of the sea ground due to tidal flow quantitatively. In this study, conventional hydraulic resistance measurement apparatus was improved to consider direction change of the current flow. Various artificial clayey soil specimens were made from Kaolinite and Jumunjin standard sand and hydraulic resistance tests were performed by changing the flow direction to validate the effect of the direction change on the scour of the seafloor.

  • PDF

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

Numerical Simulation of Effect on Atmospheric Flow Field by Development of Coastal Area (임해지역의 개발이 기상장에 미치는 영향예측)

  • Lee, Sang-Deug;Mun, Tae-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.919-928
    • /
    • 2006
  • The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain lot the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values, Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center. Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is veil accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime. And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center. Temperature after development was high $0.55\sim0.67^{\circ}C$ in the 14 hoots, also was tend to appear lowly $0.10\sim0.22^{\circ}C$ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.

A Study on the Application of Coastal Disaster Prevention Considering Climate Change (기후변화를 고려한 연안지역 재해예방기법 적용방안 연구)

  • Lee, Sung Hyun;Kim, Bo Ram;Im, Jun Hyeok;Oh, Kuk Ryul;Sim, Ou Bae
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.369-376
    • /
    • 2018
  • Korea is surrounded by the West Sea, the South Sea, and the East Sea. There are various points at which large and small rivers flow into the sea, and areas where these rivers meet the coast are vulnerable to disasters. Thus, it is necessary to study disaster prevention techniques based on coastal characteristics and the pattern of disasters. In this study, we analyzed the risk factors of disaster districts analyzed in comprehensive plans for the reduction of damage to coastal cities from storms and floods. As a result of standardization, four factors (tide level, intensive rainfall & typhoon, wave, and tsunami) were identified. Intensive rainfall & typhoon occurred along the West Sea, the South Sea, and the East Sea coast. Factors that should be considered to influence disasters are tide level for the West Sea, tsunami and tide level for the South Sea, and wave in the East Sea. In addition, disaster prevention techniques to address these factors are presented, focusing on domestic and overseas cases.

Characteristics of Concentration Distribution of Coastal Urban Air Pollutants (연안 도시 대기오염 물질의 농도분포 특성)

  • 박종길;석경하;김지형;차주완
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1243-1252
    • /
    • 2002
  • This paper aims to find the characteristics of concentration distribution of coastal urban air pollutants. For this purpose, It was used the daily meteorological data and the hourly concentration data for $O_3$and NO$_2$ in Busan metropolitan city from 1994 to 1996. It was investigated the annual and monthly distribution of ozone and nitrogen dioxide concentration at each site in Busan, and also investigated the characteristics of concentration change of air pollutants with time under the sea breeze. As a results, the concentration of nitrogen dioxide and ozone tend to be increased every year and nitrogen dioxide concentration is higher than ozone concentration at all sites in Busan. The concentration of ozone is high in summer season and low in winter season, but the concentration of nitrogen dioxide have a reversed trend. The monthly peak concentration of ozone occurred in April and September, while the monthly minimum concentration of nitrogen dioxide occurred in August. Their trend were identified by sites near the coastline than sites stands apart from the coastline. The sea breeze occurred annual mean 81 day in Busan from 1994 to 1996. The main wind direction of sea breeze was classified into southwesterly and southeasterly. In case of southwesterly, It was pronounced the south wind and southwest wind. In case of southeasterly, the occurrence frequency of east wind was high. Especially, the concentrations of urban air pollutants, such as ozone and nitrogen dioxide, were high on time which the sea breeze flow, and the areas that ozone concentration was high moved from outside part to central part of city with time. In costal urban such as Busan, the wind direction of sea breeze is influenced the change of ozone and nitrogen dioxide concentration on time which the sea breeze flow at each site and also influenced the change of air pollutants concentration of sites on the pathway of sea breeze.

Seasonal Variation of Water Mass Distributions in the Eastern Yellow Sea and the Yellow Sea Warm Current

  • Pang, Ig-Chan;Hyun, Kyung-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.41-52
    • /
    • 1998
  • A seasonal circulation pattern in the eastern Yellow Sea (EYS) is suggested from the water mass analysis and geostrophic calculation using the hydrographic data collected by National Fisheries Research and Development Institute during the years of 1970 to 1990. This research focuses on the presence of inflow of warm (and saline) waters into EYS in summer. EYS is divided into two regions in this paper: the west coast of Korea (WCK) and the central Yellow Sea (CYS). In CYS, waters are linked with warm waters near Cheju Island in winter, but with cold waters from the north in summer (in the lower layer). It is not simple to say about WCK because of the influences of freshwater input and tidal mixing. Nevertheless, water mass analysis reveals that along WCK, waters have the major mixing ratios (40-60%) of warm waters in summer, while the dominant mixing ratios (50-90%) of cold waters in winter. Such a seasonal change of water mass distribution can be explained only by seasonal circulation. In winter, warm waters flow northward into CYS and cold waters flow southward along WCK. In summer, warm waters flow northward along WCK and cold waters flow southward into CYS. This circulation pattern is supported by both statistical analysis and dynamic depth topography. Accordingly, Yellow Sea Warm Current may be defined as the inflow of warm waters to CYS in winter and to WCK in summer.

  • PDF

A study on sea-water freezing behavior for ice maker for fishing boat (선박용 제빙장치의 개발을 위한 해수동결거동에 관한 연구)

  • Choi, Young-Gyu;Kim, Jung-Sik;Kim, Kyung-Kun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.233-238
    • /
    • 2005
  • According to change of flow around a circular tube for freezing, measured a variety of salinity of frozen layer. This study was experimentally performed to investigate freezing behavior of sea water along a vertical cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as air-bubble method, cooled -tube temperature and air-flow rate. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

Analysis of Effect on Seawater Flow Change and Circulation Inside Port Due to the Construction of South Breakwater and Weir at Gamcheon Port

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.136-146
    • /
    • 2020
  • In this study, numerical simulations are used to analyze the effect of the south breakwater and weir on seawater flow change and circulation within the Gamcheon port. Flow patterns in the eastern direction are particularly affected by the breakwater during the ebb tide and current velocity is slightly reduced by construction of the weir. Additionally, seawater circulation is reduced by both features. In order to increase seawater circulation, a seawater flux structure is needed on the west breakwater. A weir-type structure will be more efficient than a seawater flux culvert.

Some Considerations on Heat Flow in Korea (한반도(韓半島) 지열류량(地熱流量)에 대(對)한 약천(若千)의 고찰(考察))

  • Sung Kyun, Kim
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 1984
  • The geophysical implications of the observed heat flow in the Korean Peninsula are examined. The Peninsula can be devided into two typical regions of high (Zone 1) and normal heat flows (Zone 2), and anomalous sharp change of heat flow between two zones is noteworthy. Zone 1 (southeastern coast of the Peninsula) to be connected to the East Sea (=Japan Sea) of high heat flow region corresponds with the region of late-Mesozoic to Tertiary igneous activity. With the radioactive elements concentrated in the crust, the observed heat flow in Zone 2 can be almostly explained. While, only a half of the heat flow in Zone 1 is explained. As a possible explanation of high heat flow in Zone 1, partial melting in the lower crust is examined. The temperature of $800-900^{\circ}C$ calculated at the bottom of the crust excludes the possibility of partial melting or magma generation in the crust. Alternatively, a remaining thermal effect of late-Mesozoic to Tertiary igneous activity is considered. However, it appears that the thermal effect already disappeared and that the vertical temperature distribution reached at steady state 30 MY ago (= 10 MY after the igneous activities came to an end). After all, the existence of some other effective heat transfer in Zone 1 is strongly suggested. The high heat flow to be same kind of anomalous one of the East Sea can be recognized as a result of the trench-back-arc thermal flux. The plate subduction in the Japan Trench will generate an induced flow above the slab of the East Sea, a typical back-arc basin, and hence the induced flow will heat the surrounding lithosphere.

  • PDF