• Title/Summary/Keyword: Sea bass

Search Result 75, Processing Time 0.023 seconds

Early Osteological Development and Squamation in the Spotted Sea Bass Lateolabrax maculates (Pisces: Lateolabracidae) (한국산 점농어(Lateolabrax maculatus) 자치어의 골격발달과 비늘형성)

  • Kang, Chung-Bae;Myoung, Jung-Goo;Kim, Yong-Uk;Kim, Hyong-Chol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.3
    • /
    • pp.271-282
    • /
    • 2012
  • Early osteological development of the skull, vertebral column, and fins, and squamation in the spotted sea bass, Lateolabrax maculates, were studied under extensive larval rearing conditions. The first ossification during cephalic skeleton development began with the premaxillary, dentary, and parasphenoid at 6.4 mm Total length (Notochord length 6.1 mm) and was completed by 25.2 mm TL (Standard length 20.3 mm). Ossification of the cartilaginous caudal complex started simultaneously in the urostyle and two preural centra at 12.2 mm TL (10.4 mm) and it was completely ossified by 32.0 mm TL (26.4 mm). The principal caudal fin rays, with a count of 9/8, began to ossify at 11.6 mm TL (10.2 mm) and the procurrent caudal fin rays, with counts of 4 (upper) and 3 (lower), started to ossify by 12.6 mm TL (10.9 mm). Ossification of these parts was completed by 21.4 mm TL (17.5 mm). Ossification of the vertebral column was first observed in the first to fourth centra at 8.3 mm TL (7.5 mm) and was fully completed by 21.7-35.0 mm TL (17.8-29.3 mm). The pectoral girdle started to ossify by 5.6 mm TL (5.4 mm) and was completed by 26.8 mm TL (21.8 mm). Eight pectoral fin rays were ossified at 11.6 mm TL (10.2 mm) and 16-18 rays were fully ossified by 13.8 mm TL (12.0 mm). Also, the dorsal, anal, and pelvic fin rays started to ossify at 12.2 mm TL (10.4 mm) and were completed by 12.8 mm TL (11.2 mm), 23.8 mm TL (19.4 mm), and 13.8 mm TL (12.0 mm), respectively. Ossification of the anal and dorsal pterygiophores initially occurred by 12.6 mm TL (10.9 mm) and 14.3 mm TL (12.2 mm), and was completed by 21.4 mm TL (17.5 mm) and 19.3 mm TL (15.9 mm), respectively. Squamation started at three centers of differentiation: the middle region of the trunk, the anterior of the caudal peduncle, and on the caudal peduncle at 23.8 mm TL (19.4 mm). The body was covered with scales, except the snout, at 57.2-60.2 mm TL (SL 47.1-49.2 mm).

Phototaxis of Fish 7. Response of Sea-Bass to the Colored Lights (어류의 주광성에 관한 연구 7. 색광에 대한 농성어의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.151-156
    • /
    • 1987
  • The author carried out an experiment to find out the response of sea-bass, Epinephelus septemfasciatus (Thunberg) to the color lights. The experimental tank (360L$\times$50W$\times$55H cm) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20 W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, red, white and yellow in day time, and red, blue, yellow and white at night time. The gathering rate of fish on illumination period was not constant and fluctuated with irregularity. The difference of the gathering rate on two different colors of light was small and the difference was larger in night time then in day time.

  • PDF

Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal

  • Rimoldi, Simona;Finzi, Giovanna;Ceccotti, Chiara;Girardello, Rossana;Grimaldi, Annalisa;Ascione, Chiara;Terova, Genciana
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.10
    • /
    • pp.40.1-40.14
    • /
    • 2016
  • Background: Due to the paucity of oceanic resources utilized in the preparation of diets for cultured fish, commercial feed producers have been trying to replace fishmeal (FM) using alternative protein sources such as vegetable protein meals (VMs). One of the main drawbacks of using VMs in fish feed is related to the presence of a variety of anti-nutritional factors, which could trigger an inflammation process in the distal intestine. This reduces the capacity of the enterocytes to absorb nutrients leading to reduced fish growth performances. Methods: We evaluated the mitigating effects of butyrate and taurine used as feed additives on the morphological abnormalities caused by a soybean meal (SBM)-based diet in the distal intestine of sea bass (Dicentrarchus labrax). We used three experimental diets, containing the same low percentage of FM and high percentage of SBM; two diets were supplemented with either 0.2% sodium butyrate or taurine. Histological changes in the intestine of fish were determined by light and transmission electron microscopy. Infiltration of $CD45^+$ leucocytes in the lamina propria and in the submucosa was assessed by immunohistochemistry. We also quantified by One-Step Taqman$^{(R)}$ real-time RT-PCR the messenger RNA (mRNA) abundance of a panel of genes involved in the intestinal mucosa inflammatory response such as $TNF{\alpha}$ (tumor necrosis factor alpha) and interleukins: IL-8, IL-$1{\beta}$, IL-10, and IL-6. Results: Fish that received for 2 months the diet with 30% soy protein (16.7% SBM and 12.8% full-fat soy) developed an inflammation in the distal intestine, as confirmed by histological and immunohistochemistry data. The expression of target genes in the intestine was deeply influenced by the type of fish diet. Fish fed with taurine-supplemented diet displayed the lowest number of mRNA copies of IL-$1{\beta}$, IL-8, and IL-10 genes in comparison to fish fed with control or butyrate-supplemented diets. Dietary butyrate caused an upregulation of the $TNF{\alpha}$ gene transcription. Among the quantified interleukins, IL-6 was the only one to be not influenced by the diet. Conclusions: Histological and gene expression data suggest that butyrate and taurine could have a role in normalizing the intestinal abnormalities caused by the SBM, but the underling mechanisms of action seem different.

The Patterns of Oxygen Consumption In Six Species of Marine Fish (해산어류 6종의 산소소비 경향에 관한 연구)

  • KIM Il-Nam;CHANG Young-Jin;KWON Joon-Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.373-381
    • /
    • 1995
  • Oxygen consumption of marine fishes according to different water temperatures, fish population densities and body weights was measured in the respiratory chamber for the following six species: the olive flounder Paralichthys olivaceus, the tiger puffer Takifugu rubripes, the rockfish Sebastes schlegeli, the sea bass Lateolabrax Japonicus, the red seabream Pagrus major and the black seabream Acanthopagrus schlegeli. Also the lethal concentration of dissolved oxygen in them was determined. Oxygen consumption in each fish species increased as the water temperature increased. The relationship between the oxygen consumption rate $(Oc,\;ml/kg{\cdot}\;hr)$ and the water temperature (T,$^{\circ}C$) for each species appeared as the following equations demonstrate; olive flounder: Oc=34.0515T-339.5987 $(r^2=0.9730)$, tiger puffer: Oc=34.4941T-479.8732 $(r^2=0.9483),$ rockfish: Oc=44.7970T-634.2627 $(r^2=0.9718),$ sea bass: Oc=26.1488T-318.0633 $(r^2=0.9316),$ red seabream: Oc=61.1020T-722.8926 $(r^2= 0.9805),$ black seabream: Oc=75.1460T-947.9370 $(r^2=0.9392).$ The of gen consumption of fish with different population densities decreased as the number of fish increased. As the body weight of the olive flounder increased, the mass-specific oxygen consumption decreased. The relationship between oxygen consumption and body weight (W; g) was expressed as Oc=2532.0268W-0.6565 $(r^2=0.9229)$. The levels of lethal dissolved oxygen in the olive flounder, rockfish, tiger puffer and red seabream were 0.66, 0.79, 0.75 and 1.36 m1/1, respectively.

  • PDF

Phototaxis of Fish 6. Responce of Sea-bass to the White Lights (어류의 주광성에 관한 연구 6. 백색광에 대한 능성어의 반응)

  • Yang, Yong Rhim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.27-27
    • /
    • 1987
  • The purpose of this study is to find the light intensity which induced maximum gathering rate and to observe the variation of the gathering rate both at daytime and night by using Sea-bass, Epinephelus septemfasciatus (Thunberg). An experimental tank (360 L×50 W×55H cm) was set up in a dark room. An illumination system was attached to the end of one side of the tank to control horizontal light intensity. Eight artificial light sources were prepared by combination of three with white light bulbs (10W, 60W, 100W) and eight filters. During the experiment water depth was maintained 50cm level in the tank. The tank was marked into six longitudinal sections each being 60cm long to observe the distribution of fish. The fish were acclimatized in dark condition for 50 minutes before the main experiment. Upon turning on the light, the number of fish in each section was counted 60 times every 30 seconds, and the gathering rate was obtained from the average number of fish in each section. The light intensity inducing maximum gathering rate was 24.13 lux (15.25~35.93 lux) at daytime and 0.41 lux (0.25~0.63 lux) at night. The variation of the gathering rate of fish in illumination time was great and did not show any definite pattern but fluctuated irregularly. Its different between daytime and night is remarkable.

Phototaxis of Fish 6. Responce of Sea-bass to the White Lights (어류의 주광성에 관한 연구 6. 백색광에 대한 능성어의 반응)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.137-143
    • /
    • 1987
  • The purpose of this study is to find the light intensity which induced maximum gathering rate and to observe the variation of the gathering rate both at daytime and night by using Sea-bass, Epinephelus septemfasciatus (Thunberg). An experimental tank (360 L$\times$50 W$\times$55H cm) was set up in a dark room. An illumination system was attached to the end of one side of the tank to control horizontal light intensity. Eight artificial light sources were prepared by combination of three with white light bulbs (10W, 60W, 100W) and eight filters. During the experiment water depth was maintained 50cm level in the tank. The tank was marked into six longitudinal sections each being 60cm long to observe the distribution of fish. The fish were acclimatized in dark condition for 50 minutes before the main experiment. Upon turning on the light, the number of fish in each section was counted 60 times every 30 seconds, and the gathering rate was obtained from the average number of fish in each section. The light intensity inducing maximum gathering rate was 24.13 lux (15.25~35.93 lux) at daytime and 0.41 lux (0.25~0.63 lux) at night. The variation of the gathering rate of fish in illumination time was great and did not show any definite pattern but fluctuated irregularly. Its different between daytime and night is remarkable.

  • PDF

Blood Property and Biologger Attachment Efficiency of Spotted Sea bass Lateolabrax maculatus depending on External Biologger Attachment Methods (바이오로거 체외 부착방법이 점농어(Lateolabrax maculatus)의 혈액성상 및 바이오로거 부착효율에 미치는 영향)

  • Pil Jun Kang;Geun Su Lee;Sung-Yong Oh
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.22-32
    • /
    • 2024
  • The purpose of this study was to determine the effect of external biologger attachment methods on the blood parameters and attachment efficiency of spotted sea bass Lateolabrax maculatus (mean body weight 2630.8 g). The fish were tagged using four different external attachment methods with dummy biologgers: no attachment (control), anchor attachment (AA), monofilament attachment (MA), and silicon tube attachment (SA), each with triplicates. Blood indices and biologger attachment efficiency were assessed on days 1, 7, 14, 28, 56, and 84 after attachment. The concentrations of hematocrit, Na+, Cl-, glutamic pyruvic transaminase and total protein, and the activity of superoxide dismutase in blood were not affected by the external attachment method of biologger. The concentrations of glutamic oxaloacetic transaminase (day 1 of attachment), hemoglobin (day 56) and total cholesterol (day 56 and 84) in AA group, the concentrations of glucose and cortisol (day 14) and total cholesterol (day 84) in MA group showed significantly higher than those of control (p<0.05). During the experiment period, the SA group had no differences from the control in all blood properties. The biologger attachment efficiencies of the AA, MA, and SA groups after 84 days were 0.0%, 33.3%, and 100.0%, respectively. These results indicate that the optimum external biologger attachment method under our experimental conditions is SA type.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

In situ Hybridization of a Megalocytivirus Using Nucleic Acid Probes against ATPase and the Major Capsid Protein of Rock Bream Iridovirus

  • Lee, Nam-Sil;Do, Jeong-Wan;Jung, Sung-Ju;Park, Mi-Seon;Kim, Jin-Woo;Kim, Yi-Cheong
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.146-152
    • /
    • 2006
  • Systemic infections of maricultured fishes by Megalocytivirus species have occurred over a broad area in South Korea, causing extensive economic loss. We developed digoxigenin-labeled nucleic acid probes against the 230-bp ATPase and 311-bp major capsid protein (MCP) of rock bream Oplegnathus fasciatus iridovirus (RBIV) using polymerase chain reaction, and an in situ hybridization (ISH) method to detect Megalocytivirus in formalin-fixed tissues of mariculture species (rock bream, sea bass, and olive flounder). ISH-positive cells were abundant in the hematopoietic and connective tissues of various organs, while brain tissue showed little or no signal. The ISH procedure can become an important diagnostic tool in complement with histopathological methods, and advances epidemiological studies on the origin and distribution of Megalocytivirus in mariculture.

Microbial contamination including Vibrio cholerae in fishery auction markets in West Sea, South Korea

  • Choi, Yukyung;Lee, Yewon;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Oh, Hyemin;Shin, Il-Shik;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.11
    • /
    • pp.26.1-26.7
    • /
    • 2019
  • Background: The monitoring of pathogens of fishery auction markets is important to obtain safe fishery products regarding hygiene and sanitation. In this study, aerobic, coliform, Escherichia coli, and Vibrio cholerae were monitored in the fishery products and environmental samples obtained from fishery auction markets. Methods: The fishery products (flounder, octopus, skate, rock cod, sea bass, snail, monkfish, flatfish, comb pen shell, corb shell, conger eel, hairtail, croaker, and pilchard) were placed in filter bags, and the environmental samples (samples from the water tanks at the fishery auction markets, seawater from the fishery distribution vehicles, ice from wooden or plastic boxes, and surface samples from wooden and plastic boxes used for fish storage) were collected. Aerobic bacteria, E. coli, and coliform in the samples were enumerated on aerobic count plates and E. coli/coliform count plates, respectively. For V. cholerae O1 and V. cholerae non-O1 quantification, most probable number (MPN)-PCR analysis was performed. Results: Aerobic and coliform bacteria were detected in most samples, but E. coli was not detected. Wooden boxes were contaminated with high levels of aerobic and coliform bacteria in all seasons (spring, summer, and fall). During fall, V. cholerae non-O1 were detected in snails, hairtails, croakers, flatfishes, pilchards, plastic boxes, and water samples. Conclusions: These results indicate an increased prevalence of V. cholerae contamination in fishery products in fall, including food contact samples, which can be vehicles for cross-contamination.