• Title/Summary/Keyword: Sea areas

Search Result 1,635, Processing Time 0.039 seconds

A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(II) (북태평양의 악기상조건과 선박의 안전운항에 관한 연구(II))

  • 민병언
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.33-59
    • /
    • 1990
  • In cold season, the developed extratropical cyclones and associated cold fronts, and NW winter monsoon are encountered very frequently in the North Pacific, especially in the northwest part of it. The two sea areas, namely, the northwest part of North Pacific, especially the eastern area far off Japan east coast, and Burmuda Triangle in the North Atlantic are generally known as two of the most dangerous areas in the world because of high incidence of sea casualties. Even large ocean going vessels were sunk frequently due to strong winds and very high seas caused by NW monsoon or developed cyclones during the winter months. The purpose of this paper is to analyse the real state of heavy weather and high sea phenomena on the vesscls at sea, thus helping mariners operate in such conditions.

  • PDF

A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(I) (북태평양의 악기상조건과 선박의 안전운항에 관한 연구(I))

  • 민병언
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.107-144
    • /
    • 1987
  • In cold season, ice accretion on ship, drift ice, NW winter monsoon, developed extratropical cyclones and associated cold fronts, in warm season, tropical cyclones and dense sea fogs, are encountered very frequently in the North Pacific, especially in the northwest part of it. The two areas, namely, the northwest part of the North Pacific and Burmuda Triangle in the North Atlantic are generally known as most dangerous areas in the world because its high incidence of sea cascualities. In recent years, the small fisherboats operating in the northern seas were frequently sunk in a group as they encountered ice accretion or drift ice. And ocean going vessels were also sunk frequently due to strong winds and very high seas in winter monsoon or developed cyclones and cold fronts. The purpose of this paper is to analyze the real state of heavy weather conditions such as ice accretion on ship drift, ice, typhoons and sea fogs, and also to analyse the effect of these heavy weather phenomena on the vessels at sea, thus helping mariners operate in such heavy weather conditions.

  • PDF

Quality Characteristics of Satuma Mandarin by Harvest Areas and Sea Level Altitude in Cheju (생산지역과 고도별 궁천조생 온주밀감의 품질특성)

  • 고정삼;강창희;좌창숙
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2000
  • Quality characteristics of Satsuma mandarin (Citrus unshiu Marc.var.miyagawa) harvest on early December according to production areas and sea level altitude of Cheju were investigated. Soluble solids and flesh ratio were distributed 9.32∼12.50, 75.95%-81.3 in citrus fruits harvested in orchards located below 10m sea level altitude (lower area), and was 10.23-12.17 , 77.35%-80.29% on those over 150m sea level altitude )higher area), respectively. Acid content of citrus juice was 0.95%-1.26% in fruits harvested inlower area, and was 1.02%-1.39% in higher area. In proportion to late harvesting , Brix/acid ratio and fruits quality was improved. Soluble solids of fruits harvested in higher area were higher than those of fruits from higher area, but acid contents were on the contrary . In sensory evaluation on fruit appearance, the differences between two altitudes were not clear.

  • PDF

Sanitary Evaluation for Seawater and Laver Pyropia sp. in the Major Laver Growing Areas, Korea (우리나라 주요 김 생산해역의 해수 및 물김에 대한 위생학적 평가)

  • Jeong, Sang Hyeon;Shin, Soon Bum;Oh, Eun Gyoung;Jo, Mi-Ra;Yoon, Min Chul;Lee, Hee Jung;Son, Kwang-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Sanitary evaluation of seawater and Pyropia sp. laver collected from the five major laver growing areas in Korea was performed four times over the course of a year. The seawater quality in four of these five areas was regarded as the clean area according to Korean criteria, but the seawater at one investigation site in Seoheon area was found to exceed the standard for fecal coliform. In the bacteriological safety analysis of laver (raw source), the percentages of samples not conforming to Chinese criteria at the five sites were 55.6% (Seocheon), 70.0% (Shinan), 81.8% [Jindo (Haenam)], 63.6% (Wando), and 28.6% [Goheung (Jangheung)]. Pathogenic bacteria were not detected in all laver samples. The food safety of laver (raw source) based on heavy metal concentration was confirmed using Korean criteria; the concentrations of heavy metals in laver samples collected from the major laver growing areas were 0.008-0.632 mg/kg wet weight (ww) lead, 0.024-0.137 mg/kg ww cadmium, 0.908-2.892 mg/kg ww total arsenic, and 0.003-0.013 mg/kg ww total mercury. Therefore, pollution source management and periodic monitoring of heavy metals may be required to improve the food safety of laver produced in these laver growing areas.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

Study on Estimation of Local Ice Pressures Considering Contact Area with Sea Ice (해빙과의 접촉 면적을 고려한 국부 빙압력 추정 연구)

  • Kim, Tae-Wook;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2014
  • Ice loads may be conveniently categorized as local ice loads and global ice loads. Local ice loads are often defined as ice pressures acting on local areas of shell plates and stiffeners. Therefore, local ice loads are defined in all ice class rules. However, directly measuring the local ice pressure using the actual ice class vessel is a very difficult task because appropriate instruments for direct measurement must be installed on the outer hull, and they are easily damaged by direct ice contacts/impacts. This paper focuses on the estimation of the local ice pressure using the data obtained from icebreaking tests in the Arctic sea in 2010 using the Korean icebreaking research vessel (IBRV) ARAON. When she contacted the sea ice, the local deformation of the side shell was measured by the strain gauges attached to the inside of the shell. Simultaneously, the contact area between the side shell and sea ice is investigated by analyzing the distribution of the measured strain data. Finally, the ice pressures for different contact areas are estimated by performing a structural analysis.

Influences of Climate Factors and Water Temperature in Squid Spawning Grounds on Japanese Common Squid (Todarodes pacificus) Catches in the East (Japan) Sea

  • Lee, Chung-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.150-158
    • /
    • 2007
  • Data on squid catches, water temperature, and climatic factors collected for the Northwest and subtropical North Pacific were analyzed to examine the influence of oceanic and climatic conditions in spawning grounds on catches of Japanese common squid, Todarodes pacificus, in the East (Japan) Sea. The main spawning ground was divided into four sub-areas: the South Sea of Korea (R1), the southern waters off Jeju, Korea (R2), the southwestern part of Kyushu, Japan (R3), and the northern part of Okinawa, Japan (R4). Interannual and decadal fluctuations in water temperatures correlated well with squid catches in the East/Japan Sea. In particular, water temperatures at a depth of 50 to 100 m in sub-areas R3 and R4 showed higher correlation coefficients (0.54 to 0.59, p<0.01) in relation to squid catches in the East/Japan Sea than for R1 and R2, which had correlation coefficients of 0.40 or less (p>0.05). Air temperature and wind velocity fluctuations in each sub-area are correlated with water temperature fluctuations and were closely connected with variations in the surface mixed layers. Water, air temperatures and wind velocities at the main spawning grounds are linked to the Southern Oscillation Index (SOI) with higher signals in the ca. 2-4-year band. Strong changes in a specific band and phase occurred around 1976/77 and 1986/87, coincident with changes in squid catches.

Correction of Aquarius Sea Surface Salinity in the East Sea (Aquarius 염분 관측 위성에 의한 동해에서의 표층 염분 보정)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.259-270
    • /
    • 2016
  • Sea Surface Salinity (SSS) observations from the Aquarius satellite in the East Sea show large systematic biases mainly caused by the surrounding lands and Radio Frequency Interferences (RFI) along the descending orbits on which the satellite travels from the Asian continent to the East Sea. To develop a technique for correcting the systematic biases unique to the East Sea, the least square regression between in situ observations of salinity and the reanalyzed salinities by HYCOM is first performed. Then monthly mean reanalyzed salinities fitted to the in situ salinities are compared with monthly mean Aquarius salinities to calculate mean biases in $1^{\circ}{\times}1^{\circ}$ boxes. Mean biases in winter (December-March) are found to be considerably larger than those in other seasons possibly caused by the inadequate correction of surface roughness in the sea surrounded by the land, and thus the mean bias corrections are performed using two bias tables. Large negative biases are found in the area near the coast of Japan and in the areas with islands. In the northern East Sea, data sets using the ascending orbit only (SCIA) are chosen for correction because of large RFI errors on the descending orbit (SCID). Resulting mean biases between the reanalysis salinities fitted to in situ observations and the bias corrected Aquarius salinities are less than 0.2 psu in all areas. The corrected mean salinity distributions in March and September demonstrate marked improvements when compared with mean salinities from the World Ocean Atlas (WOA [2005-2012]). In September, salinity distributions based on the corrected Aquarius and on the WOA (2005-2012) show similar distributions of Changjiang Diluted Water (CDW) in the East Sea.

Reproduction and population dynamics of Acetes chinensis (Decapoda: Sergestidae) on the south-western coastal waters of Korea, Yellow Sea

  • Oh, Chul-Woong;Jeong, In-Ju;Ma, Chae-Woo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.220-221
    • /
    • 2002
  • The planktonic shrimp, Acetes chinensis Hansen, 1919 inhabits the coastal areas of the Info-West Pacific, Korea, China, Taiwan, and Japan and is most abundant along the coastal areas of Yellow Sea. Several studies have locally examined aspects of reproductive biology of the species such as reproductive cycle, spawning, maturity, breeding pattern and fecundity. (omitted)

  • PDF

SEA LEVEL VARIATIONS IN THE LONG TERM IN THE EAST SEA OF KOREA

  • Cho, Keun-Han;Kim, Hee-Jong;Lee, Dong-In;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.37-40
    • /
    • 2007
  • Satellite altimetric data from 1993 to 2006 are used to study sea level variations in the long tenn in the East Sea. The trend of sea level in the East Sea is rising 4.16 mm/yr and indicate that it rose 5.82 cm in 2006 against to 1993. The South Ses is the fastest in the study areas (4.89 mm/yr, 6.84cm) and the Yellow Sea is 4.10 mm/yr and 5.75cm, respectively. The both of Mokho coast and Ulleung island are minimal sea level in March to May and maximal sea level in September to November. For periods above 20.9days, coherences are found to be higher than 95% confidence level, and the phase differences are near zero.

  • PDF