• 제목/요약/키워드: Sea Water Depth

검색결과 800건 처리시간 0.03초

동해고유수의 해양학적 특성 I. 겨울철 동해의 해황과 동해고유수 (Oceanographic Characteristics of the Japan Sea Proper Water I. Oceanographic Conditions of the Japan Sea and the Japan Sea Proper Water in Winter)

  • 최용규;양성기
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.317-332
    • /
    • 1994
  • Based on the Results of Marine Meteorological and Oceanographical Observations (1966 ~ 1987), oceanographic conditions of the Japan Sea in winter was studied in relation to the Japan Sea Proper Water (JSPW). The mean and dispersion of the deep water above 1000 m depth are 0.26$\pm$0.2$^{\circ}C$ in temperature and 5.1$\pm$0.25 ml/h in oxygen. The mean and dispersion of the bottom water below 1000m depth are 0.07$\pm$$0.04^{\circ}C$ in temperature and 5.1$\pm$0.15ml/1 in oxygen. The distributions of the temperature and dissolved oxygen in the deep water above 1000m depth are ranged wider than 각one of the bottom water below 1000m depth in T-S and T-$ extrm{O}_2$ diagrams. The bottom water are showed more homogeneous and smaller variations than the deep water in the characteristics of water mass. The deep water above 1000m depth is active in contact with the atmosphere. The JSPW similar to the above characteristics is showed in the open ocean of the north of $40^{\circ}$30""N, west of $138^{\circ}$E. Therefore, the deep water is formed probably by the open-ocean convection.tion.

  • PDF

해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구 (Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System)

  • 김삼열;박진영;박재홍
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

동해 심층수 개발해역의 오염부하량 해석과 해황변동 (Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in East Sea, Korea)

  • 이인철;김경회;윤한삼
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.340-345
    • /
    • 2003
  • This study, as a basic study for establishing a influence forecasting/estimating model when drain the deep sea water to the ocean after using it, carried out studies as follows; 1) estimating the amount of river discharge and pollutant loads inflowing into the developing region of deep sea water in East Sea, Korea 2) a field observation of tidal current, vertical distribution of water temperature and salinity, and 3-D numerical experiment of tidal current to analysis physical oceanographic status. The amount of river discharge flowing into the study area was estimated about $462.6{times}10^{3}m^{3}/day$ of daily mean in 2002 year. annual mean pollutant load of COD, TN and TP were estimated 7.02 ton-COD/day, 4.06 ton-TN/day and 0.39 ton/day, respectively. Field observation of tidal current results usually show about $20{\sim}40cm/sec$ of current velocity at the surface layer, it indicated a tendency that the current velocity decreases under 20cm/sec as the water depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the differences of water temperature and salinity between the surface layer and bottom layer were about $18^{\circ}C$ and 0.8 psu, respectively. On the other hand, we found that there was a definite as the water mass of deep sea water about 34 psu of salinity.

  • PDF

Paleoceanographic Records from the Northern Shelf of the East China Sea since the Last Glacial Maximum

  • Li, Bao-Hua;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • 제34권3호
    • /
    • pp.151-166
    • /
    • 1999
  • Both benthic and planktonic foraminifera from Core 97-02 obtained in the northern East China Sea are quantitatively analyzed for reconstructing the paleocenography of late Quaternary. Since the earliest time of the core sediment (last not older than 18000 yr B.P.), the paleo-water depth has changed from less than 20 m to near 100 m at present, which is reflected by the benthic foraminiferal assemblages: before 14000 yr B.P., the water depth was shallower than 20 m; from 14000 to 7500 yr B.P., water depth was 20-50 m; and after 7500 yr B.P., water depth was 50-100 m. The foraminiferal fauna also disclose the water mass history: during the last glacial maximum, the water that dominated the study area might be the coastal water; at the end of the last glacial maximum(14000-9500 yr B.P.), the Yellow Sea Cold Water mostly affected this area; then it gave way to the Yellow Sea Warm Current after 9500 yr B.P.; and finally, the warm water has dominated this area since 9500 yr B.P. because of the westward shift and enhancement of the Kuroshio Current.

  • PDF

Bathymetric mapping in Dong-Sha Atoll using SPOT data

  • Huang, Shih-Jen;Wen, Yao-Chung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.525-528
    • /
    • 2006
  • The remote sensing data can be used to calculate the water depth especially in the clear and shallow water area. In this study, the SPOT data was used for bathymetric mapping in Dong-Sha atoll, located in northern South China Sea. The in situ sea depth was collected by echo sounder as well. A global positioning system was employed to locate the accurate sampling points for sea depth. An empirical model between measurement sea depth and band digital count was determined and based on least squares regression analysis. Both non-classification and unsupervised classification were used in this study. The results show that the standard error is less than 0.9m for non-classification. Besides, the 10% error related to the measurement water depth can be satisfied for more than 85% in situ data points. Otherwise, the 10% relative error can reach more than 97%, 69%, and 51% data points at class 4, 5, and 6 respectively if supervised classification is applied. Meanwhile, we also find that the unsupervised classification can get more accuracy to estimate water depth with standard error less than 0.63, 0.93, and 0.68m at class 4, 5, and 6 respectively.

  • PDF

조선시대 해선과 강선의 선형특성 (A Study on the Characteristics of the Sea Ship and the River Ship′s Hull Form in the Chosun Period of Korea)

  • 최병문
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.102-113
    • /
    • 2004
  • A name of 'Sea Ship' and 'River Ship' had been used based on the comprehension for the difference of ship's hull form in Chosun period. We can find a number of literature describing the situation which transferred the cargo from Sea Ship to River Ship because Sea Ship could not go upstream in the river of which the current is fast and the water depth is low. The reason why Sea Ship could not go upstream was that the bottom of Sea Ship was narrow, it means the non-flat bottom. Generally Sea Ship had short length, wide breadth, so L/B of 2.2∼3.0, and high draft and depth. River Ship has long length, narrow breadth, so L/B of 5.0∼6.3, and low draft and the flat bottom in order to adapt to the low water depth of the river.

파쇄대를 통과하는 해저터널의 수리거동에 관한 연구 (Hydraulic behavior of a subsea tunnel in a ground with fractured-zones)

  • 신종호;최규철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1571-1580
    • /
    • 2008
  • Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.

  • PDF

동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향 (Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea)

  • 김봉채;최복경;김병남
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향 (Effect of expanding low-salinity water in the East China Sea on underwater sound propagation)

  • 길범준
    • 한국음향학회지
    • /
    • 제42권1호
    • /
    • pp.16-24
    • /
    • 2023
  • 해수의 염분은 수중 음속 산출에 있어 영향을 적게 미치는 변수로 알려져 있다. 본 연구는 여름철 양쯔강(장강) 희석수가 동중국해로 확장하는 과정에서 양쯔강 하구 인근 해수의 저염분이 음속의 수직구조에 어떻게 영향을 미치는지를 파악하였다. 음속 산출에 활용된 염분을 관측치와 고정값으로 구분 후 각각의 음속을 비교한 결과, 양쯔강 희석수의 영향으로 염분약층이 수온약층보다 강하게 형성되는 경우 음속이 상이하게 나타났다. 또한, 음원을 수온약층의 중간 심도에 위치하여 음선경로를 추적한 결과 염분약층이 강한 경우 고정된 염분으로 계산된 음속에서는 확인되지 않는 수중음파통로가 나타났다. 이러한 결과를 바탕으로 본 연구는 여름철 저염분수에 의한 강한 염분약층이 형성된 조건에서 음속 산출 시 Expandable Bathy Thermograph(XBT)보다는 실제 염분이 고려된 관측기기인 Expendable Conductivity Temperature Depth(XCTD)와 Expendable Sound Velocimeter(XSV)의 활용이 중요함을 제시한다.

On the Origin of the Tsushima Current Water

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • 제6권2호
    • /
    • pp.85-91
    • /
    • 1971
  • The origin of the Tsushima Current water was investigated with a discussion on the western North Pacific Central Water. The Tsushima Current water is formed by the mixing of the Kuroshio surface water and the East China Sea water. The area where the mixing takes place remarkably is found to be the marginal region of the continental shelf of the East China Sea at the depth from 100 to 200 meters.

  • PDF