• Title/Summary/Keyword: Sea Surface scattering

Search Result 47, Processing Time 0.022 seconds

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Measurements of Bistatic Sea Surface Scattering Signals (양상태 해수면 음파산란 측정)

  • 최지웅;나정열;나영남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.81-86
    • /
    • 2001
  • 126-kHz bistatic sea surface scattering measurements were conducted in the shallow waters off the east coasts of Korea. The range from source to receiver was altered to change the scattering angle at the grazing angles of 38% and 52% . Unlike bottom scattering signal, the arrival time and the amplitude of sea surface scattering signals were varied due to the fluctuation of sea surface. The measured forward scattering strengths were compared to model predictions of Kirchhoff approximation and small slope approximation. In overall, the tendency of the scattering strengths showed reasonable agreement among the experimental data, Kirchhoff approximation, and small slope approximation.

  • PDF

Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk;Kim Che-Young;Kim Dong-Il;Jeon Joong-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.

Impact of Sea Surface Scattering on Performance of QPSK (해면산란이 QPSK 성능에 미치는 영향)

  • Xue, Dandan;Seo, Chulwon;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1818-1826
    • /
    • 2014
  • Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.

Error Characteristics of Ship Radiated Noise Estimation by Sea Surface Scattering Effect (해면 산란효과에 의한 선박 방사소음 추정치 오차)

  • Park, Kyu-Chil;Park, Jihyun;Seo, Chulwon;Choi, Jae Yong;Lee, Phil-Ho;Yoon, Jong Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.563-573
    • /
    • 2013
  • The ship radiated noise level fluctuates by the interference between direct and reflected paths. The effect of sea surface reflection path on interference depends strongly on sea surface roughness. This paper describes error characteristics of ship acoustic signature estimation by sea surface scattering effect. The coherent reflection coefficient which explains a magnitude of sea surface scattering and its resultant interference acoustic field is analyzed quantitatively as a function of a grazing angle, effective surface height, frequency, source-receiver range and depths of source and receiver. Theoretical interference acoustic field is compared with experimental result for two different sea surfaces and five different frequencies by changing source-receiver range. It is found that both matches well each other and a magnitude of interference acoustic field is decreasing by increasing a grazing angle, effective surface height, frequency, and depths of source and receiver and decreasing source-receiver range. For given experimental conditions, the transmission anomaly which is a bias error of ship acoustic signature estimation, is about a range of 1~3 dB. The bias error of an existing ship radiated noise measurement system is also analyzed considering wind speed, source depth and frequency.

Measurements of High-frequency Sea Surface Backscattering Signals (고주파 해수면 후방산란 신호 측정)

  • 최지웅;나정열;박경주;윤관섭;박정수;나영남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 2002
  • Sea surface backscattering signal measurements were conducted in the shallow waters off the east coast of Korea to study the acoustic wave scattering from the sea surface. The grazing angles of wave range from 20° to 40° with a frequency of 60 kHz. The wind speed and surface roughness of the experiment area were 3 m/os and below 1 m, respectively. The measured acoustic backscattering strengths greatly exceed the composite roughness predictions at low grazing angles. To account for this discrepancy, the scattering strengths due to a near-surface bubble layer were considered. The prediction with bubble contribution was found to be in good agreement with the experimental measurement.

Estimation Model for RF Signal Strength over Sea and Land Surfaces (바다와 지표면의 산란을 고려한 RF 수신신호세기 계산 모델)

  • Hyun, Jong-Chul;Kim, Sang-Keun;Oh, Yi-Sok
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-148
    • /
    • 2005
  • The objective of this study is to estimate RF signal strength over sea and land surfaces. For this work we calculated scattering by land with DEM(Digital Elevation Model) and sea surface with RMS surface height. and we selected two area inland and sea shore as RX point. And for each area, we get VV-pol and HH-pol characteristic of scattering at 2.2GHz.

  • PDF

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting Pierson-Moskowitz Surface Using a Monte-Carlo FDTD Technique (몬테칼로 유한차분 시간영역 해석기법을 이용한 피어선-모스코위츠 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • In this paper, the scattered field from a Pierson-Moskowitz sea surface assumed as the PEC by the Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional surface used to analysis scattering was generated by using the Pierson-Moskowitz model. Back scattering coefficients are calculated with different values of the wind speed(U) which determine configuration of the Pierson-Moskowitz sea surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 50, 8192, and 128k, respectively. In order to verify the computed values these results are compared with those of small perturbation methods, which show good agreement between them.

Microwave Radar Backscatter Model of Multiyear Sea Ice

  • Kim, Young-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 1988
  • Multiyear ice is quite thick in general, and it needs to be distinguished from thinner types of ice because it represents a severe navigational hazard. Here, models are described for the radar backscatter from multiyear sea ice, based on simple scattering layers. Under cold conditions, the radiative transfer volume-scatter model can describe the backscattering from multiyear ice for frequencies higher than about X-band, while the surface scattering contribution has to be included for lower frequencies. A simple semi-empirical model is shown to be a good approximation to the radiative transfer model in describing the volume scattering from multiyear ice.

Numerical Analysis of Back Scattering from a Target over a Random Rough Surface Using DRTM

  • Yoon, Kwang-Yeol
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • This paper is concerned with an analysis of the back scattering of electromagnetic waves from a target moving along random rough surfaces such as the desert, and sea. First, the discrete ray tracing method(DRTM) is introduced, and then, this method is applied to the back scattering problem in order to investigate the effect of the back scattering from random rough surfaces on the electric field intensities. Finally, numerical examples of various height deviations of the Gaussian type of rough surfaces are shown. It is numerically demonstrated that the back scattering is dominated by the diffractions related to the reflections from the random rough surfaces.