• Title/Summary/Keyword: Sea Surface Topography

Search Result 112, Processing Time 0.027 seconds

Seasonal Accumulation Pattern and Preservation Potential of Tidal-flat Sediments: Gomso Bay, West Coast of Korea (조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만)

  • Chang, Jin-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • Seasonal changes of topography, sediment grain size and accumulation rate in the Gomso-Bay tidal flat, west coast of Korea, have been studied in order to understand the seasonal accumulation pattern and preservation potential of the tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheniers accelerates during the winter and typhoon periods, but it almost stops in summer when mud deposition is instead predominant at the middle and upper tidal flats. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods. Measurements of accumulation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface. The upper tidal flat where the accumulation rate of summer was generally higher than that of winter was characterized by a continuous deposition throughout the entire year, whereas in the middle tidal flat, sediment accumulations were concentrated in winter relative to summer and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Can cores taken across the tidal flat reveal that sand-mud interlayers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore. Based on above results, it is suggested that the storm deposits by winter storms and typhoons would consist of the major part of the Gomso-Bay sediments.

  • PDF

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.

한강하류지형면의 분류와 지형발달에 대한 연구 (양수리에서 능곡까지)

  • Park, No-Sik
    • Journal of the Speleological Society of Korea
    • /
    • no.68
    • /
    • pp.23-73
    • /
    • 2005
  • Purpose of study; The purpose of this study is specifically classified as two parts. The one is to attempt the chronological annals of Quaternary topographic surface through the study over the formation process of alluvial surfaces in our country, setting forth the alluvial surfaces lower-parts of Han River area, as the basic deposit, and comparing it to the marginal landform surfaces. The other is to attempt the classification of micro morphology based on the and condition premising the land use as a link for the regional development in the lower-parts of Han river area. Reasons why selected the Lower-parts of Han river area as study objects: 1. The change of river course in this area is very serve both in vertical and horizontal sides. With a situation it is very easy to know about the old geography related to the formation process of topography. 2. The component materials of gravel, sand, silt and clay are deposited in this area. Making it the available data, it is possible to consider about not oかy the formation process of topography but alsoon the development history to some extent. 3. The earthen vessel, a fossil shell fish, bone, cnarcoal and sea-weed are included in the alluvial deposition in this area. These can be also valuable data related to the chronological annals. 4. The bottom set conglometate beds is also included in the alluvial deposits. This can be also valuable data related to the research of geomorphological development. 5. Around of this area the medium landform surface, lower landform surface, pediment and basin, are existed, and these enable the comparison between the erosion surfaces and the alluvial surfaces. Approach : 1. Referring to the change of river beds, I have calculated the vertical and horizontal differences comparing the topographic map published in 1916 with that published in 1966 and through the field work 2. In classifying the landform, I have applied the method of micro morphological classification in accordance with the synthetic index based upon the land conditions, and furthermore used the classification method comparing the topographic map published in 1916 and in that of 1966. 3. I have accorded this classification with the classification by mapping through appliying the method of classification in the development history for the field work making the component materials as the available data. 4. I have used the component materials, which were picked up form the outcrop of 10 places and bored at 5 places, as the available data. 5. I have referred to Hydrological survey data of the ministry of Construction (since 1916) on the overflow of Han-river, and used geologic map of Seoul metropolitan area. Survey Data, and general map published in 1916 by the Japanese Army Survbey Dept., and map published in 1966 by the Construction Research Laboratory and ROK Army Survey Dept., respectively. Conclusion: 1. Classification of Morphology: I have added the historical consideration for development, making the component materials and fossil as the data, to the typical consideration in accordance with the map of summit level, reliefe and slope distribution. In connection with the erosion surface, I have divided into three classification such as high, medium and low-,level landform surfaces which were classified as high and low level landform surfaces in past. furthermore I have divided the low level landform surface two parts, namely upper-parts(200-300m) and bellow-parts(${\pm}100m$). Accordingly, we can recognize the three-parts of erosion surface including the medium level landform surface (500-600m) in this area. (see table 22). In condition with the alluvial surfaces I have classified as two landform surfaces (old and new) which was regarded as one face in past. Meamwhile, under the premise of land use, the synthetic, micro morphological classification based upon the land condition is as per the draw No. 19-1. This is the quite new method of classification which was at first attempted in this country. 2. I have learned that the change of river was most severe at seeing the river meandering rate from Dangjung-ni to Nanjido. As you seee the table and the vertical and horizontal change of river beds is justly proportionable to the river meandering rate. 3. It can be learned at seeing the analysis of component materials of alluvial deposits that the component from each other by areas, however, in the deposits relationship upper stream, and between upper parts and below parts I couldn't always find out the regular ones. 4. Having earthern vessel, shell bone, fossil charcoal and and seaweeds includen in the component materials such as gravel, clay, sand and silt in Dukso and Songpa deposits area. I have become to attempt the compilation of chronicle as yon see in the table 22. 5. In according to hearing of basemen excavation, the bottom set conglomerate beds of Dukso beds of Dukso-beds is 7m and Songpa-beds is 10m. In according to information of dredger it is approx. 20m in the down stream. 6. Making these two beds as the standard beds, I have compared it to other beds. 7 The coarse sand beds which is covering the clay-beds of Dukso-beds and Nanjidobeds is shown the existence of so-called erosion period which formed the gap among the alluvial deposits of stratum. The former has been proved by the sorting, bedding and roundness which was supplied by the main stream and later by the branch stream, respectively. 8. If the clay-beds of Dukeo-bed and Songpa-bed is called as being transgressive overlap, by the Eustatic movement after glacial age, the bottom set conglomerate beds shall be called as being regressive overlap at the holocene. This has the closest relationship with the basin formation movement of Seoul besides the Eustatic movement. 9. The silt-beds which is the main component of deposits of flood plain, is regarded as being deposited at the Holocene in the comb ceramic and plain pottery ages. This has the closest relationship with the change of river course and river beds.

Daesoon Jinrihoe's Geumgangsan Toseong Training Temple Complex as Appraised through the Hyeonggi Theory in Fengshui (풍수 형기론(形氣論)으로 본 대순진리회 금강산토성수련도장)

  • Shin, Young-dae
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.36
    • /
    • pp.35-78
    • /
    • 2020
  • This study aims to reveal the overall Fengshui figuration and geomantic features of Daesoon Jinrihoe's Geumgangsan (Mt. Geumgang) Toseong Training Temple Complex from the Hyeonggi (Energy of Form) Theory in Fengshui. This study first looked at the mountain landscape viewable from the surface, examined the influence of Qi (Energy) flowing inside it, comprehended the flow of its vitality in terms of its strengths and weaknesses, and gauged the depth of the energy produced from mountain streams to determine fortune and misfortune. There is a special significance to this site due to Sangje's teaching that "⋯ it will be prosperous with 12,000 Dotonggunja (Dao-empowered Sages)," and it is also known as a efficacious grounds for cultivation among ascetics due to it housing the royal mausoleum of Dojeon (interpreted by some as Maitreya). Concerning this, this study explores the geomantic symbolism and growth-supporting land of Geumgangsan Toseong Training Temple Complex as it corresponds to Fengshui theory, and in keeping with this, the topography and conditions are likewise examined. The mountain range and its energy pathways (veins) harmonize with the pure water energy coming from the East Sea. The mountain terrain of Mount Geumgang, and the geomantic location, topography, and energy pathways that influence Daesoon Jinrihoe Geumgangsan Toseong Training Temple Complex are all explored. The Baekdudaegan Mountain Range extends through Mount Geumgang to Sinseonbong Peak, and one range extends to Geumgangsan Toseong Training Temple Complex whereas the other range extends through Sangbong Peak down to Misiryeong Valley and Mount Seorak. Thus, this study demonstrates that Daesoon Jinrihoe has always strongly considered the relationship between its temple complexes and their surrounding environment. The order has always selected locations that exhibit optimal conditions which suit the construction of sacred spaces. The determinations in this paper were made through an academic approach that drew upon various theories of Fengshui while examining Daesoon Jinrihoe's Geumgangsan Toseong Training Temple Complex. The in-depth analysis was specifically based on Hyeonggi Fengshui. At the same time, this study also looked into the surroundings of Geumgangsan Toseong Training Temple Complex. In particular, the mountains and flow of nearby bodies of water were comprehensively examined to show how the surrounding topography corresponds to the principles of Fengshui. An integral approach combining all major theories of Fengshui revealed that Geumgangsan Toseong Training Temple Complex starts from Sinseonbong Peak, and its energy flows through the main mountain range, going through numerous geographical changes of yin and yang. When the range flows down, the water flows accordingly, and where the water whirls, the mountains are shaped accordingly. Eventually, this energy reaches Geumgangsan Toseong Training Temple Complex. From the organic relationship between mountains and bodies of water, which can be said to be the essence of the order of nature, it can be judged that the most prominent geomantic feature of Geumgangsan Toseong Training Temple Complex corresponds to traditional theories of Fengshui in that it forms a configuration wherein optimal water energy supports the Virtuous Concordance of Yin Yang and harmonizes the Blue Dragon with the White Tiger.

Temporal and Spatial Variations of the Cold Waters Occurring in the Eastern Coast of the Korean Peninsula in Summer Season (하계 동해연안역에서 발생하는 냉수역의 시공간적 변동 특성)

  • SUH Young Sang;JANG Lee-Hyun;HWANG Jae Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • Daily time series of longshore wind at 8 stations, sea surface temperature (SST) at 11 stations in the eastern coast of the Korean peninsula during $1983\~1997$ and the NOAA/AVHRR satellite data during $1990\~1998$ were used in order to study the temporal and spatial variations of the upwelling cold water which occurred in the summer season. The cold water occurred frequently in the eastern coastal waters of Korea such as Soimal, Kijang, Ulgi, Kampo, Pohang, Youngduk, Chukbyun, Chumunjin and Sokcho, During the upwelling cold water phenomenon, SST came down more than $-5^{\circ}C$ in a day. The maximum of the averaged RMS amplitude of daily SST was $5.8^{\circ}C$ along the eastern coast of Korea on Julian day 212 from $1983\~1997$. The cross correlation coefficients were higher than 0.5 between Sokcho and Chumunjin in the northern part of the East Sea, and along Soimal, Kijang, Ulgi, Kampo and Pohang in the southern part of the East Sea. In late July, 1995 the cold water occurred at Ulgi coastal area and extended to Ullung island which is located 250 km off the Ulgi coast. Even though the distance between Soimal and the Ulgi coast area is more than 120 km, the cross correlation coefficient related to the anomalies of SST due to upwelling cold water was the highest (0.7) in the southeastern coastal area of the Korean peninsula. This connection may be due to the cyclonic circulation of the Tsushima Current in this area and the topography of the ocean rather than the local south wind which induced the coastal upwelling.

  • PDF

Regeneration Processes of Nutrients in the Polar Front Area of the last Sea IV. Chlorophyll a Distribution, New Production and the Vertical Diffusion of Nitrate (동해 극전선역의 영양염류 순환과정 IV. Clorophyll a 분포, 신생산 및 질산염의 수직확산)

  • MOON Chang-Ho;YANG Sung-Ryull;YANG Han-Soeb;CHO Hyun-Jin;LEE Seung-Yong;KIM Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.259-266
    • /
    • 1998
  • A study on the biological and chemical characteristics in the middle last Sea of Korea was carried out at 31 stations in October $11\~18$, 1995 on board the R/V Tam-Yang. The chlorophyll a concentration, new and regenerated production, and the vertical diffusion of nitrate from the thermocline structure were investigated. From the vertical distribution of chlorophyll a, subsurface maxima were observed near the thermorline at most stations including the frontal zone, except at the southern stations where the maximum chloropyll a concentration occurred at the surface, The nanophytoplankton was the most dominant fraction comprising $83.5\%$ of total phytoplankton cell numbers, but netphytoplankton were common at the southern stations where the dominant species were Rhizosolenia sp. Nitrogenous new production and regenerated productions were measured using the stable isotope $^{15}N$ nitrate and ammonia uptake method. The vertically integrated nitrogen production varied between 8.470 and $72.945\;mg\;N\;m^{-2}\;d^{-1}$. The f-ratio, which is the traction of new production from primary production, waried between 0.03 and 0.72, indicating that $3\%$ to $72\%$ of primary production was supported by the input of nutrients from below the euphotic zone and the rest are supported by ammonia recycled within the euphotic layer. This range of f-ratio encompasses from extremely oligotrophic to eutrophic area characteristics. The differences in productivity and f-ratio among stations were related to frontal structure and the bottom topography. The values were high near the frontal zone and low outside of it, and the station near Ulleng Island showed the highest f-ratio. Vertical diffusion coefficients were calculated from both the water column stability (Kz-1) of King and Devol's equation (1979) and new nitrogen requirement (Kz-2). The values of Kz-2 ($0.11\~0.55\;cm^2/s$) were relatively low compared to the values reported previously.

  • PDF

A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events (영동 대설사례의 레이더 강설강도 추정 관계식에 관한 연구)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.509-522
    • /
    • 2016
  • Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

Numerical Simulation of Local Atmospheric Circulations in the Valley of Gwangneung KoFlux Sites (광릉 KoFlux 관측지 계곡에서의 국지순환 수치모의)

  • Lee, Seung-Jae;Kim, Joon;Kang, Minseok;Malla-Thakuri, Bindu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.246-260
    • /
    • 2014
  • A 90-m horizontal-resolution numerical model was configured to study the micrometeorological features of local winds in the valley of Gwangneung KoFlux (Korea Flux network) Sites (GDK: Gwangneung Deciduous forest site in Korea, GCK: Gwangneung Coniferous forest site in Korea) during summer days. The U. S. Geological Survey (USGS) Shuttle Radar Topography Mission (SRTM) data were employed for high-resolution model terrain height. Model performance was evaluated by comparing observed and simulated near-surface temperature and winds. Detailed qualitative analysis of the model-simulated wind field was carried out for two selected cases which are a clear day (Case I) and a cloudy day (Case II). Observed winds exhibited that GDK and GCK, as well as Case I and Case II, had differences in timing, duration and strength of daytime and nighttime wind direction and speeds. The model simulation results strongly supported the existence of the drainage flow in the valley of the KoFlux tower sites. Overall, the simulated model fields realistically presented the diurnal cycle of local winds in and around the valley, including the morning drainage-upslope transition and the evening reversal of upslope wind. Also, they indicated the complexity of local winds interactions by presenting that daytime westerly winds in the valley were not always pure mountain winds and were often coupled with larger-scale wind systems, such as synoptic-scale winds or mesoscale sea breezes blowing from the west coast of the peninsula.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF