• Title/Summary/Keyword: Sea Level Rise

Search Result 249, Processing Time 0.022 seconds

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Geomorphological Development of Shore Platforms at Dongdo and Seodo in the Southern Coast of Dok-do Island (독도 서도 및 동도 남부 해안의 파식대 지형 발달)

  • Hwang, Sangill;Kwon, Yong-whuy;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.33-45
    • /
    • 2019
  • The shore platforms at Dok-do could be an important and clear indicator showing dimensional reduction of Dok-do. Especially flat type shore platforms are distributed in the southern coast of Dok-do island, composed of weak rocks against erosional resistance like interbedded lapilli tuff and massive tuff breccia. The distribution of shore platform is partially related to the wind direction at Dok-do island. The primary SW- and secondary SE winds are representative among wind directions at Dok-do, maintaining from spring to the autumn. Therefore, wide shore platforms could be developed by waves approaching from SW and SE directions in the southern coast of Dok-do. The sea stacks like Gunham-rock, Neopdeok-rock, Keungaje-rock and Jakeungaje-rock on the western coast are also considered to be formed by wave erosion from the SE direction. The shore platforms in the southern coast of Dok-do island were developed since ca. 7,000 yr. BP, when sea level raised almost to the present level. The average extension speed of shore platform was calculated to 4.0mm/y, because the broadest shore platform with the width ca. 28m was extended for ca. 7,000 years. The width's dimension of shore platform at Dok-do reflects a slow extension rate in the present, although erosional process will be faster with the sea level rise in the future.

A Study on the Tidal Characteristics of the Nakdongpo Estuary (낙동포의 조석특성에 관한 연구)

  • 전승환;전홍선
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.2
    • /
    • pp.47-63
    • /
    • 1983
  • In this paper, we have investigated the tidal characteristics of the Nakdongpo estuary. We have carried out the analysis of harmonic constant with the use of the recorded data on tidal level at the Gadeong Do tide station and analyzed the flow velocity data obtained by ourselves at two points in the Nakdongpo estuary. In addition, we have analyzed the variation of the mean-sea level. Typical items of the characteristics we have found are; (1) The principal harmonic constants and non-harmonic constants are shown in table 2. (2) Tide in this area shows the semidiurnal inequality. (3) The mean-sea level is shown to be depressed at the rate of about 1cm to the rise of 1 mbar of the atmospheric pressure. (4) (i) At $K_2$ point, The E-W component of the velocty reveals the nature of progressive waves. The N-S component reveals the nature of stationary waves. (ii) At $K_3$ point, The E-W component shows the characteristics of progressive waves to some degree. The N-S component shows a weak hint of stationary waves. (5) At $K_2$ point, S-component is predominant due to the flow of river. At $K_3$ point, E-component is predominant due to the Tsushima current.

  • PDF

Economic Damage of Sea-level Rise and The Optimal Rate of Coastal Protection in the Korean Eastern Southern Areas (기후변화에 따른 해수면 상승의 경제적 피해비용 및 최적 해안 방어비율 추정 -동·남해안 지역을 대상으로-)

  • Min, Dongki;Cho, Kwangwoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.1
    • /
    • pp.21-42
    • /
    • 2014
  • In this study, we are estimating the economic effects of the rising sea level due to the climate change in the Korean Eastern and Southern coastal areas. Using disaggregated regional data, we also estimate the optimal rate of coastal protection. We use FUND (The Climate Framework for Uncertainty, Negotiation and Distribution) in order to obtain estimates of the expected inundation ratios by geographical district. Our estimates suggest that in Busan the ratio of inundated land to total territory will likely constitute 3.19% by 2100, while the number in Gangwon-do province is estimated to be lower at only 0.1%. We estimate the associated economic damage to differ by geographical district with the economically active regions such as e.g. Busan and Ulsan cities, or the Gyeongsang-nam-do province, likely to sustain relatively more damage. In Busan and Ulsan where the coastal line is relatively short and the size of expected economic damage is rather high, we estimate the optimal rate of coastal protection to be at the level of 98% and 92%, respectively. In the Kyeongsang-nam-do area that is also likely to suffer a substantial economic damage due to the inundation, we suggest the optimal ratio of coastal protection to be set at the level of 78%~79%. In contrast, in the Kangwon-do province where the expected economic damage is estimated to be low, the optimal rate of coastal protection is estimated to be around 43%, depending on the scenario.

Geoacoustic Properties of Marine Sediment Adjacent the Southwestern Taean Peninsula, the Yellow Sea (황해 태안반도 남서부 해양퇴적물의 지음향 특성)

  • Kim, HwaRang;Kim, Dae-Choul;Seo, YoungKyo;Lee, Gwang-Soo;Kim, KyongO
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.247-258
    • /
    • 2016
  • Physical and acoustic properties of sediment on the southwestern Taean Penisula, the Yellow Sea, were studied using eight piston cores. The sediments in the study area are largely composed of sand which has been deposited with sea-level change after LGM(Last Glacial Maximum). After the sea-level rise, fine-grained sediments discharged from Keum River and neighboring coast area were deposited as muddy sand or sandy mud. Results of these sedimentary environment in this area, the texture of sediments are different from place to place with variable horizontal and vertical distribution of physical and acoustic properties. Correlations among the physical, geoacoustic properties, and mean grain size show slight deviations from those of the South Sea in spite of similar pattern. This is probably due to the differences in sedimentary environment, mineral composition, and measurement system.

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

A Review on the Results of Adjusting Weight in Vulnerability Analysis of Climate Change Driven Disaster - Focused on Sea-level Rise - (도시 기후변화 재해취약성 분석방법의 가중치 조정에 따른 결과 비교 검토 - 해수면 상승 재해를 중심으로 -)

  • Kim, Jisook;Kim, Hoyong
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.171-180
    • /
    • 2017
  • The vulnerability analysis of climate change driven disaster has been used as institutional framework for the urban policies of disaster prevention since 2012. However, some problems have occurred due to the structure of vulnerability analysis, such as overweighted variables and duplicated application of variables of similar meaning. The goal of this study is to examine the differences of results between the method of current guideline and the method of weight equalization. For this, we examines the current structural framework of the vulnerability analysis, and performs empirical analysis. As a result, the extent and magnitude of vulnerability showed different spatial patterns depending on the weighting methods. Standardized weighting method relatively represented wider vulnerable areas compared to the pre-existing method which follows the current instruction manual. To apply the results of vulnerability analysis to urban planning process for disaster prevention, this study suggests that the reliability of the results should be ensured by improving analytical framework and detailed review of the results.

A Review on Multidecadal Coastal Changes at Funafuti, Tuvalu from 1897 to 2015

  • Ahmed, Harun-Al-Rashid;Chan-Su, Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.23-45
    • /
    • 2023
  • Tuvalu is a small reef islands country in the Pacific Ocean. Its coastal regions are very much dynamic due to the profound effects of tropical cyclones and sea level rise (SLR). However, research works on coastline dynamics of Tuvalu mainly cover its capital, Funafuti. Therefore, this review summarizes the extent of long-term coastal changes in different islets of Funafuti and on overall Tuvalu. In Funafuti, highly accreting areas are Te Afualiku, Fuafatu, Motugie, and Amatuku, and highly eroding areas are Fuagea and Tefala with the fully disappeared islet of Vasafua after 2005. However, in spite of different causes and supposition of scientists on disappearing these lands the accretion is more dominant than erosion which resulted in 7.3% net increase of land areas of Tuvalu over 117 years till 2015. Severe tropical cyclones mainly caused accretion of land areas by forming coral rubble rampart formation and further reworks and erosion to small sandy islands whereas frequent low-energy cyclones mainly caused erosion. Though, till now severe erosion of coastal areas are not evident by global SLR, islets of Funafuti experienced remarkable shoreline increase as formation of 30-40 m wide rubble rampart formation along 19 km in 1971 by tropical cyclone Bebe and net increase of area of 3.45 ha by tropical cyclone Pam in 2015. In spite of such overall accretion of coastal areas several scientists suspect drowning of its areas in future because of high SLR (~5.1±0.7 mm/year) at Funafuti which supposedly will not work as a breakwater anymore. Thus, protection measures should be taken to prevent coastline erosion as well as land reclamation activities should be done following the global examples.

An Analysis of International Research Trends in Green Infrastructure for Coastal Disaster (해안재해 대응 그린 인프라스트럭쳐의 국제 연구동향 분석)

  • Song, Kihwan;Song, Jihoon;Seok, Youngsun;Kim, Hojoon;Lee, Junga
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.17-33
    • /
    • 2023
  • Disasters in coastal regions are a constant source of damage due to their uncertainty and complexity, leading to the proposal of green infrastructure as a nature-based solution that incorporates the concept of resilience to address the limitations of traditional grey infrastructure. This study analyzed trends in research related to coastal disasters and green infrastructure by conducting a co-occurrence keyword analysis of 2,183 articles collected from the Web of Science (WoS). The analysis resulted in the classification of the literature into four clusters. Cluster 1 is related to coastal disasters and tsunamis, as well as predictive simulation techniques, and includes keywords such as surge, wave, tide, and modeling. Cluster 2 focuses on the social system damage caused by coastal disasters and theoretical concepts, with keywords such as population, community, and green infrastructure elements like habitat, wetland, salt marsh, coral reef, and mangrove. Cluster 3 deals with coastal disaster-related sea level rise and international issues, and includes keywords such as sea level rise (or change), floodplain, and DEM. Finally, cluster 4 covers coastal erosion and vulnerability, and GIS, with the theme of 'coastal vulnerability and spatial technique'. Keywords related to green infrastructure in cluster 2 have been continuously appearing since 2016, but their focus has been on the function and effect of each element. Based on this analysis, implications for planning and management processes using green infrastructure in response to coastal disasters have been derived. This study can serve as a valuable resource for future research and policy in responding to and managing various disasters in coastal regions.