• Title/Summary/Keyword: Screw rotor

Search Result 35, Processing Time 0.026 seconds

Design and Performance Analysis of Screw Supercharger (스크류 수퍼차저의 설계 및 성능해석)

  • 박동규;이관수;오박균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.72-80
    • /
    • 2000
  • This study aims at the optimal design of the screw rotor, its performance analysis, and development of a small screw supercharger which has a low noise compared with the root type supercharger. The basic theoretical equations and the basic design of the screw supercharger have been established. The optical design of the screw rotor's shape has been also performed theoretically. Also, the performance analysis technique of the designed screw rotor has been developed.

  • PDF

Design of Cutter Profile for Screw Rotor) (스크류 로터를 가공하기 위한 커터의 치형설계와 가공에 관한 연구)

  • 홍형식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.79-84
    • /
    • 1996
  • Recently a symmetric and non-symmetric profile of screw rotor has been designed in the interior. Howere the processing method of screw rotor and the cutter design for screw rotor were not studied. Therefor we could not make the shape of the screw rotor designed by profile function with computer. In this study we have made cutter profile design program and manufactured cutters for screw rotors using H.S.S We machined screw rotors of symmetric 4x6 profile non-sysmmetric 4x6 profile with almighty milling machine.

  • PDF

Design of Cutter Profile for Screw Rotor (스크류 로터를 가공하기 위한 커터의 치형설계에 관한연구)

  • 김연수;황순원;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.907-912
    • /
    • 1994
  • Recently, a symmetric and non-symmetric profile of screw rotor has been designed in the interior. However the processing method of screw rotor and the cutter design for screw rotor were not studied. Therefore we could we could not make the shape of the screw rotor designed by profile function with computer. In this study, we have made cutter profile design program, and manufactured cutters for screw rotors using H.S.S. We have machined screw rotorts of symmetric 4*6 profile, non-symmetric 4*6 profile with almighty milling machine.

  • PDF

Design and Machining of a Screw Rotor of a Single-Screw Compressor (싱글 스크류 압축기의 스크류 로터의 설계 및 가공)

  • Kim, Doo-Hyeong;Kyung, Jin-Ho;Kim, Yoang-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.452-457
    • /
    • 2016
  • Single screw compressors are widely used in the fields of air/gas compression, refrigeration, and chemical fluid transportation systems. A single-screw compressor is composed of a screw rotor and two gate rotors located at both sides. This simple construction enables low rotational speed of the rotor, efficient compression with low noise, low vibration, and long bearing life. Despite these merits, the design method of single-screw compressors is not well known. To accelerate the industrial application of single-screw compressors, a design method using coordinate transformation is presented in this paper, and a tool trajectory is established for machining. Finally, the screw rotor, which is machined using the proposed method, is presented.

Design of Cutter Profile and the Characteristics of Vibration for Symmetric Screw Rotor (대칭형스크류로터의 커터설계와 진동특성에 관한 연구)

  • 최상훈
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.257-264
    • /
    • 1995
  • We designed the cutter profile for symmetric screw rotor and did vibration experiment of screw rotor manufactured by the designed cutter profile. The results of this study are summarized as follows. (1) We designed the cutter profile of screw rotor (4-6)(5-6) by using numerical analysis program. (2) The maximum amplitude and variation of amplitude of 5-6 profile rotor are about 30 - 36.7% and 10 - 25% smaller than those of 4-6 profile rotor, respectively. (3) As the angular velocity of rotor changes from 100 to 300 rpm, the vibration of X, Y axis in driving shaft of 5-6 profile rotor is about 10 - 20% smaller than that of 4-6 profile rotor.

  • PDF

The Design of Cutter profiles for Manufacturing Rotors of Screw Compressor (스크류 로터 가공용 커터의 치형설계에 관한 연구)

  • Park, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.109-118
    • /
    • 1997
  • The purpose of this paper is to design cutter profiles for manufacturing rotors of screw compressor, which are based on universal milling machine. The surface profile of screw rotor which is helicoidal is derived as brief equation through the coordinates transformation of the section perpendicular to rotor axis. And the equations of contact lines between a cutter and the surface profile of screw rotor are derived. The computer program which can analyze the equation of contact lines numerically and design the cutter profiles of screw rotor is made, and verified through measuring screw rotors which are menufactured as the designed cutter by the computer program.

  • PDF

A Study on Machining of a Compressor Rotor using Formed Tools (총형공구를 이용한 압축기 로터 가공에 관한 연구)

  • Park S.Y.;Lim P.;Lee H.K.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1285-1288
    • /
    • 2005
  • Screw rotors, the key parts of screw compressors, are used in compressing air and refrigerant due to their high productivity, compact size, low noise and maintenance. In general, a screw compressor is composed of a pair of rotors of complex geometric shape. The manufacturing cost of the screw rotors is high because the complicated helical shapes of the screw rotors are manufactured usually by the dedicated machine tools. In this study, rotor profile is divided into three parts for the efficient machining. The formed tools are designed and shared for the respective split region. By cutting the screw rotor using the formed tools, this method is more efficient than the end mill in machining rotor. Experimental results show that 4-axis machining using formed tools needs less time and has the accuracy.

  • PDF

Performance Analysis of Screw Air Compressor (스크류 공기 압축기의 성능해석)

  • Park, Dong-Gyu;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.184-193
    • /
    • 2002
  • This study aims at the optimal design of the screw rotor and its performance analysis. The optimal design of the screw rotor's shape has been performed theoretically. Also, the performance analysis technique of an oil-injected screw air compressor is developed. The effect of internal leakage, heat exchange between air and oil, and flow resistance at suction and discharge ports are included in the performance analysis. Some numerical examples of the volumetric efficiency and adiabatic efficiency for sample rotors are demonstrated for various lobe combination, rotor wrap angles and L/D ratios.

Design of Fly-Cutter for Antisymmetric Screw Rotor (비대칭형 스크류 로터용 플라이커터의 치형설계에 대한 연구)

  • Choi, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 1997
  • In this study, we designed tooth profile of the fly-cutter for antisymmetric rotor which is used in screw compressor. In order to verify this profile, we manufactured three different pairs(J46, N46, P46) of antisymmetric rotor using fly-cutter. We got the following conclusions from this study. (1) We obtained better contact condition using 3pairs of rotor which are manufactured by the fly-cutter. (2) We could prevent the cutter interference near bottom point of the robe of screw rotor.

Experimental Study on the Performance of Screw Compressor with Various Shapes of Air End (에어엔드 형상변화에 따른 스크류 압축기 성능에 관한 실험적 연구)

  • Kim, Tae-Yoon;Lee, Jae-Young;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • The performance of screw air compressor is affected by rotor profile, lobe number, air end wrap angle, rotor L/D ratio, suction and discharge ports, revolutions of air end and load regulation control, etc. In general, an efficient screw compressor needs a rotor profile of which has a large flow cross-section area, short sealing lines and a small blow-hole. In this study, experimental study was performed with newly designed $5{\times}6$ rotor profile and various shapes of air end. Results show that the measured specific power consumption of the newly designed screw compressor appeared to be lower than any other published data for the equivalent screw compressors manufactured.