• 제목/요약/키워드: Screech

검색결과 25건 처리시간 0.026초

축대칭 초음속 제트에서 스크리치 모드 전이현상의 수치적 연구 (Numerical Investigation on the Mechanism of Mode Transition in Axi-symmetric Supersonic Jet Screech)

  • 빈종훈
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.790-797
    • /
    • 2010
  • 마하수 1.0~1.2 범위의 초음속 제트에서 발생되는 축대칭 스크리치 톤 소음의 모드 전이 현상이 수치적으로 분석되었다. 이를 위해 k-e 난류모델을 가진 축대칭 Navier-Stokes 방정식이 사용되었으며 수치기법으로서 공간에 대해 소산관계보존기법과 시간에 대해 최적화된 4단계 시간 적분법이 사용되었다. 특히 낮은 마하수에서 발생하는 축대칭 A1 모드의 경우, 비선형성에 기인한 부가적인 음향파 발생을 확인하였으며, 강한 와류의 발생으로 인해 스크리치 소음 주파수는 와류 통과 주파수와 일치함을 알게 되었다.

Supersonic Jet Noise Control via Trailing Edge Modifications

  • Kim, Jin-Hwa;Lee, Seungbae
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1174-1180
    • /
    • 2001
  • Various experimental data, including mixing areas, cross correlation factors, surface flow patterns on nozzle walls, and far field noise spectra, was used to draw a noise control mechanism in a supersonic jet. In the underexpanded case, mixing of the jet air with ambient air was significantly enhanced as presented before, and mixing noise was also dramatically reduced. Screech tones, in the overexpanded case, were effectively suppressed by trailing edge modifications, although mixing enhancement was not noticeable. From mixing and noise performance of nozzles with modified trailing edges, enhancing mixing through streamwise vortices seems an effective way to reduce mixing noise in the underexpanded flow regime. However, screech tones in the overespanded flow regime is well controlled or suppressed by making shock cells and/or spanwise large scale structures irregular and/or less organized by a proper selection of trailing edges. The noise field in the overexpanded flow regime was greatly affected by the symmetricity of the nozzle exit geometry. In the underexpanded flow regime, the effects of the symmetricity of the nozzle exit on mixing were negligible.

  • PDF

노즐립 두께가 초음속 제트의 소음특성에 미치는 영향 (Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise)

  • 권용훈;청목준지;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구 (An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet)

  • 권용훈;임채민;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.337-340
    • /
    • 2006
  • 본 논문은 초음속 제트에서 발생하는 천음속 공명현상에 대한 실험적 연구를 기술한다. 초음속 노즐이 매우 낮은 압력비에서 작동될 때, 노즐내의 확대부에서 충격파가 발생한다. 천음속 공명현상은 이러한 충격파의 불안정한 진동에 의한 강한 음파의 발생에 기인한다. 제트 유동장은 쉴리렌 광학장치를 이용하여 가시화 하였다. 제트유동의 천음속 공명현상을 조사하기 위하여, 음향측정을 수행하였다. 천음속 공명 현상의 음향특성은 스크리치 톤과 비교하였다. 본 연구에서 얻어진 결과에 의하면, 스크리치 톤의 주파수와는 달리, 천음속 톤의 주파수는 노즐 압력비가 증가할수록 증가한다.

  • PDF

노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감 (Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet)

  • 김진화;유정열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

마이크로 제트를 이용한 과소팽창 음속 제트에서의 소음저감 (Noise Reduction of an Underexpanded Supersonic Jet via Steady Blowing with Microjets)

  • 김진화;김정훈;유정열
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1472-1479
    • /
    • 2003
  • An attempt to reduce supersonic jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10 mm. Two micro-nozzles with an inside diameter of 1 mm each are installed on the exit plane at an angle of 45 relative to the main jet axis. Far-field noise was measured at 40 diameters off the jet axis. The angle between a microphone and the jet axis is 30 or 90$^{\circ}$. For an injection rate of 4-6% of the main jet, screech tones were completely suppressed by the microjets. The reduction in the overall sound pressure levels were 2.4 and 2.7 dB for 90 and 30 measuring directions, respectively. However, the enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or deformed large scale vortical structures by the microjets.

흡음재가 초음속 제트의 소음특성에 미치는 영향 (Effect of Sound-Absorbing Materials on the Characteristics of Supersonic Jet Noise)

  • 곽종호;권용훈;청목준지;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1499-1504
    • /
    • 2004
  • The effects of absorbing materials on the characteristics of supersonic jet noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. In order to investigate the effect of absorbing materials, baffle plates of different materials (metal, grass wool and polyurethane foam) were installed at the exit of the nozzle. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained show that the screech tone amplitude and the overall sound pressure level reduce by using the baffle plates of absorbing materials, compared with the metal baffle plate. It is also found that the characteristics of supersonic jet noise are strongly dependent on the size of baffle plate.

  • PDF

소형제트를 이용한 과소팽창 음속 제트에서의 소음저감 (Noise Reduction of a Underexpanded Supersonic Jet via Steady Blowing with Microjets)

  • 김진화;김정훈;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.747-750
    • /
    • 2002
  • An attempt to reduce supersonic Jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10mm. Two micro-nozzles with an inside diameter of 1mm each are installed on the exit plane with an off-axis angle of $45^{\circ}$. Far-field noise was measured at a location 40 diameters off the jet axis. The angles between a microphone and the jet axis are $45^{\circ}\;and\;90^{\circ}$. For an injection rate less than $1{\%}$ of the main jet, screech tones were completely suppressed by the microjets. The reduction in the ovelall sound pressure levels were $2.4\;and\;2.7\;dB\;for\;90^{\circ}\;and\;45^{\circ}$ directions, respectively. The enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or broken large scale vortical structures by the microjets.

  • PDF

Experimental Investigation of Supersonic Jet Noise Reduction Using Microjet Injection

  • Mamada, Ayumi;Watanabe, Toshinori;Uzawa, Seiji;Himeno, Takehiro;Oishi, Tsutomu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.622-627
    • /
    • 2008
  • Experiment of active noise control on supersonic jet noise was conducted by use of microjet injection. The microjets were injected to the shear layer of the main jet through 22 small holes at the lip of a rectangular nozzle. Based on the measurement of farfield sound pressure, it was found that the jet noise was effectively reduced by several dB(in some cases up to 10 dB). The power levels of all measurement points were also reduced by use of microjet injection. The microjet affected not only the broadband noise but also the screech tone noise. The sound pressure level, the frequency of the screech tone, and the structure of the jet could be changed by the microjet. Flow visualization with schlieren technique was also made to observe the effect of microjet on the flow field.

  • PDF

메쉬 스크린을 이용한 초음속 제트소음 저감법에 관한 실험적 연구 (Study on Supersonic Jet Noise Reduction Using a Mesh Screen)

  • 권용훈;임채민;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.377-381
    • /
    • 2006
  • 본 논문에서는 노즐출구 단면에 설치된 메쉬 스크린을 이용하여 초음속 제트 소음 제어하기 위한 실험을 수행하였다. 메쉬 스크린은 미소 직경을 가진 스테인레스 철사들로 만들어졌으며 철망 형태이다. 노즐 압력비는 과팽창에서 부족팽창된 초음속 제트를 얻기 위해 다양하게 변화시켰다. 초기 제트 전단층을 교란하기 위해, 메쉬 스크린의 중앙 부분에 구멍을 만들었으며 그 구멍크기는 메쉬 스크린의 소음 저감효과를 조사하기 위해 변화시켰다. 유동장을 가시화하기 위해 쉴리렌 광학 장치를 사용하였고 OASPL과 소음 스펙트럼을 얻기 위해 음향을 측정하였다. 본 실험으로부터 얻어진 결과는 메쉬 스크린이 스크리치 톤을 상당히 억제하였으며, 메쉬 스크린의 구멍크기는 초음속 제트 소음을 저감하는 중요한 인자였다. 과팽창된 제트인 경우, 소음 저감효과는 적정팽창과 부족팽창된 제트에서의 저감효과보다 매우 크게 나타났다.

  • PDF