• Title/Summary/Keyword: Scramjet Engine

Search Result 132, Processing Time 0.023 seconds

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

Conceptual Design Study of Short-Range Scramjet Vehicle (단거리용 스크램젯 비행체의 개념 설계 연구)

  • Yang, In-Young;Park, Chul;Choi, Sang-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.459-462
    • /
    • 2010
  • A conceptual design is carried out for a two-stage scramjet cruise vehicle flying at Mach 4 to investigate its feasibility. The design goal is to deliver a payload of 225 kg and to fly a range of about 500 km. It is accelerated to its cruising speed by the first stage using a solid rocket of 52.9 kN thrust 3.59 m in length. The second stage cruises using a kerosene-burning scramjet engine of 6.85 kN thrust, the vehicle being 7.55 m in length and 508 mm in width. The vehicle has a take-off weight of 2.1 tons, flies 500 km in 6 minutes at 17 km altitude.

  • PDF

Performance Design Techniques for Scramjet Engines with Finite-rate Chemistry Combustion Models (유한화학반응 연소 모델을 고려한 스크램제트 엔진의 성능설계 기법)

  • Kim, Sun-Kyoung;Seo, Bong-Gyun;Kim, Sung-Jin;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.401-405
    • /
    • 2010
  • An efficient performance model for scramjet engines has been proposed for scramjet performance design. In supersonic air intake design, the compression angles of the wedge were determined to maximize the total pressure recovery of the intake based on Oswatisch criterion. Both combustion models of chemical equilibrium and finite-rate chemistry model are implemented, and compared each model with the results by Starkey for Waverider engine configuration. Finally, the performance model of concern has been confirmed by conducting performance analysis with hypothetical mission profile and design conditions.

  • PDF

Performance Characteristics of Hypersonic External Compression Inlet Using Isentropic Compression Surface (등엔트로피 압축면을 이용한 극초음속 외부 압축형 흡입구 성능 특성)

  • Kim, Young Jin;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.297-308
    • /
    • 2022
  • Most air-breathing aircraft operated in the hypersonic region are equipped with a scramjet engine. In a scramjet engine, a shock wave generated at an inlet acts as a compressor for a general gas turbine engine instead, so total pressure loss caused by the shock wave is considered very important. In this study, to minimize total pressure loss, a method of designing an external compression inlet using isentropic compression surface was proposed, and an external compression inlet with 3-deflection angles and Busemann inlet were designed under the same conditions. After that, through computational analysis, the performance characteristics at off-design conditions were compared. Each inlet shape was truncated according to the length of the 3-ramp external compression inlet, and the boundary layer correction was performed. The isentropic external compression inlet showed superior performance at the design point, but under the off-design conditions, its performance was degraded compared to the 3-ramp external compression inlet.

Experimental Study on the Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 실험적 연구)

  • Lee Hyoung-Jin;Jeung In-Seuck;Aso Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.394-398
    • /
    • 2005
  • Ramjet engine have been usually operated on Mach $1.5\sim3$ as the vehicle of supersonic cruising engine and studied about the higher performance above Mach 4. The research of Duel mode Scramjet engine which have duel operating mode of ramjet/Scramjet are in progress actively nowadays. This paper suggests the effect the flow characteristics and the effects of back pressure, angle of attack, angle of yow on the supersonic air intake on mach 4 through the Schlieren/Oil flow visualization, and pressure measurement on experimental model.

  • PDF

Numerical Study on the Characteristics of Dual-Mode Scramjet Isolator (이중 모드 스크램제트 격리부 특성에 대한 수치해석적 연구)

  • Deng, Ruoyu;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.31-36
    • /
    • 2015
  • As one of the most promising propulsive systems in the future, the dual-mode scramjet engine has drawn the attention of many researches. Detailed flow features concerned with the isolator play an important role in the dual-mode scramjet system. The 2D numerical method has been used for the dual-mode scramjet with wind tunnel. To validate the ability of the numerical model, numerical results have been compared with the experimental results. Overall pressure distributions show quite good match with the experimental results. Back pressure has been studied for maximum pressure rising. According to the results, pressure distribution of supersonic inlet section is not influenced by back pressure. The shock train is pushed towards upstream as the back pressure increases. The maximum value of back pressure without inlet unstart goes up rapidly and then keeps constant when the isolator length increases. The optimal length of isolator section ($L/H_{th}$) is 8.7 in this model.

Mixing Characteristics in Supersonic Combustor with a Cavity (Cavity를 이용한 초음속 연소기 내의 혼합특성)

  • Oh Juyoung;Bae Young-Woo;Kim Ki-Su;Jeon Young-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.359-363
    • /
    • 2005
  • In SCRamjet engine, combustion occurs in supersonic flow with airbreathing. SCRamjet is characterized by very short combustion time in combustor, so it is very important to be mixing the air and fuel in short duration. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. CFD-Fastran, commercial code with three-dimensional Navier-Stokes equation with the Menter SST turbulence model were used. The results are obtained validate experiment results for same condition. Therefore, the numerical results show the mixing enhancement characteristics with a cavity.

  • PDF

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF