• Title/Summary/Keyword: Scour

Search Result 378, Processing Time 0.024 seconds

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

A Study of the Local Scour Considering the Pier Shapes in the Cohesive Bed (점착성 하상에서의 교각형상에 따른 국부세굴 연구)

  • Choe, Gye-Un;Kim, Gi-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.539-552
    • /
    • 1998
  • When the pier is constructed in the cohesive be, the accuracy maynot be obtained because the equation for calculating the scour at piers is based upon the results which are analyzed through the experiments in the non-cohesive bed. In this paper, the variation of the depth of the pier scour occurred by constructing 5 types of pier in the channel having the cohesive material is examined. The experimental results are analyzed based upon Froude numbers and non-dimensional numbers which are indicated as the flow depths compared to the pier width. The results are also compared with the results obtained using the existing pier scour equations. In this paper, the shape factors, which can be used for calculating the scour depth of the pier in the cohesive channel bed, are suggested. The shape factors are indicated through the ratios between the scour depth at the circular pier and the scour depths at the different types of pier, and are suggested as two stages. In the first stage, in which the water depth compared to the pier width is less than 1.2, the shape factors are given as the equations. However, in the second stage the shape factors are given as the constant values. It is understood that the shape factors suggested in this paper can be properly usd for calculating local scour at piers in the bridges which are constructed in the cohesive channel bed having the characteristics of the bed material which is used in these experiments. Keywords : local scour, maximum scour depth, cohesive bed material, pier shape, pier, shape factor.

  • PDF

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Model (Flow-3D 모형을 이용한 해상풍력기초 세굴현상 분석)

  • Park, Young-Jin;Kim, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.690-696
    • /
    • 2017
  • Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

Analysis of Statistical Characteristics of Pier-Scour Depth Formula Using Hydraulic Experiment Data (수리모형실험 자료를 이용한 교각 세굴심 산정공식의 통계적 특성 분석)

  • Kim, Jong-Sub;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.349-356
    • /
    • 2021
  • Since the 1960s, traffic infrastructure, such as bridges, has increased rapidly in Korea as urbanization and industrialization progressed due to economic growth. As the scale of the bridge becomes larger, stability analysis of the superstructure of the bridge is being conducted actively, but scour stability analysis for the substructure of the bridge has not been conducted sufficiently. This study is a basic investigation to prevent large-scale disasters caused by scouring in bridge piers. A simple linear regression model was used to analyze the scour depth calculated through seventeen scour depth calculation formulae, and the scour depth measured through hydraulic model experiments. As a result, the Coleman (1971) formula was the best method among the scour depth calculation formulae, and the Froehlich (1987) formula was the most effective method for calculating the scour depth. In addition, a review using a simple regression model confirmed that the scour depth calculation formulae of CSU (1993), Coleman (1971), and Froehlich (1987) can predict a similar scour depth by reflecting domestic stream characteristics. This study can calculate the scour depth reflecting the environmental conditions of Korea in future stream design.

Local Scour at a Submarine Pipelines on Slope Beach (경사해빈에 설치된 해저관로의 국부세굴)

  • 황현구;김경호;연주흠;오현식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.176-185
    • /
    • 2003
  • In order to ensure that submarine pipelines are stable and functional during their project lives, attention must be paid to possibility of their local scouring. When a pipeline is placed on an erodible bed, scour will develop and cause the spanning of the pipeline. U they were destroyed partially or fully, it might cause enormous restoration expenses and contamination of sea water. This paper aims at examining the characteristics of the scour End the prediction of the local scour depths around the submarine pipelines. The pipelines on the model beach with the uniform slope are placed, and the local scour depths around the pipelines are obtained according to the various wave steepnesses. Using the experimental results, some parameters needed for analyses are calculated. Finally, empirical equations of the scour depth around the pipelines are suggested through the correlation analyses between the rotative scour depth. the KC number and Modified Ursell number.

The Local Scour around Submarine Pipelines in the Interaction Region Combined with Waves and Currents (파랑과 정상흐름의 공존역에서 해저관로 주변의 국부세굴)

  • Kim, Kyoung-Ho;Lee, Ho-Jin;Kim, Wan-Shik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.510-521
    • /
    • 2008
  • In the study, experiments are performed in the interaction region combined with wave and current to investigate the characteristics of local scour around submarine pipelines. Wave generator and current generator are used for the experiments and two current directions were used; co-direction and counter direction to the wave. The local scour depths around the pipeline are obtained according to the various pipe diameters(D), wave periods(T), wave heights(H), and current velocities(V). The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter($\theta$), Froude number(Fr), period parameter, Keulegan-Carpenter number(KC), Ursell number($U_R$), modified Ursell number($U_{RP}$) and ratio of velocities($U_{c}/(U_{c}+U_{m})$) are analyzed. In the interaction region combined with waves and currents, Froude number and Shields parameter are found the main parameters to cause the local scour around the submarine pipelines and this means that current governs the scour within any limits of the currents.

An Experimental Study on Local Scour around Abutment (교대주변의 국부세굴에 관한 실험적 연구)

  • An, Sang-Jin;Hwang, Bo-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.255-263
    • /
    • 1999
  • The laboratory datas are for local scour depth measurement at vertical-wall abutment. These include the data to demonstrate the effects of local scour depth of abutment nose shape, alignment angle, flow depth and flume slope. The pattern of local scour were measured and analyzed the abutments which are rectangular, sharp, chamfered rectangular and ablong nose shapes. The experiments were carried out with varing the flume slope and alignment algle increasing flow depth every step in 1cm for four abutment types on the live-bed scour conditions. The flume slope and alignment angle were varied in five cases : for latter 30 $^{\circ}$, 60 $^{\circ}$, 90 $^{\circ}$, 120 $^{\circ}$ and 150 $^{\circ}$, for former 0.01%, 0.03%, 0.05%, 0.1% and 0.2%. The maximum scour depths were analyzed for the shaped of abutment nose with rectangular, ablong, chamfered rectangular and sharp in order. The results of the experiments show that the scour depth varies not only with abutment nose shapes and alignment angle but also with the flow depth and flume slope.

  • PDF

Prediction of the Scour Depth around the Pipeline Exposed to Waves using Neural Networks (신경망을 이용한 파랑하 관로주변의 세굴심 예측)

  • Kim, Kyoungho;Cho, Junyoung;Lee, Hojin;Oh, Hyunsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.15-22
    • /
    • 2013
  • The submarine pipe, which is one of the most important coastal structures, is widely used in the development of coastal and ocean engineering. The scour of the submarine pipe occurs due to the wave and the current according to the state of the sea bed. The scour affects the submarine pipe and causes it to undergo settlement and fatigue. It is difficult to predict the local scour under complicated and various conditions of the coastal environment, even though many researches on the scour of the submarine pipe have been studied in recent years. This study analyzed the scour depth around a submarine pipe by using the Neural Network technique. The back-propagation algorithms was used to train the Neural Network. The 58 simulating experimental data for the performance and validation of the Neural Network technique were analyzed in this study. Then, the regression analysis for the same data was performed in this study to predict and compare with the Neural Network technique for the scour depth.

Prediction of Scour Potential Distributions in a Shallow Plunge Pool (얕은 감세지내의 세굴능 분포형태의 예측)

  • 손광익
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.35-43
    • /
    • 1994
  • Because a failure to provide enough plunge pool depth can create a risk to the structural stability of the psillways or dams, many researchers have proposed experimental formulas for claculating ultimate scour depth under jet issued from spillways and pipe culverts. For the design purposes of a plunge pool, scour potential distribution is important as much as the ultimate scour depth is. In this study scour potential distributions near the jet impinging point on a porous plane which can simulate a real cohesionless movable flat bed has been measured. Experimental results showed that scour potential distributions are geometrically similar to each other provided the angle of jet impact was the same. Statistical analysis of experimental results showed that scour potential distributions for the design purposes of a plunge pool could be expressed by a single equation within a range of this experiment. The proposed formula for the prediction of scour potential distributions agrees well with experimental measurements.

  • PDF

The Local Scour around a Slender Pile in Combined Waves and Current (파랑과 흐름이 결합된 공존역에서 파일 주변의 국부세굴)

  • Park, Jong-Hwan;Kim, Kyoung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.405-414
    • /
    • 2010
  • In the study, experiments are performed in the mixing region combined wave and current to investigate the characteristics of local scour around a slender pile. Wave generator and current generator are used for the experiments and currents are co-directions with the waves. The local scour depths around the pipeline are obtained according to the various pipe diameters, wave periods, wave heights, and current velocities. The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter ($\theta$), Froude number (Fr), Keulegan-Carpenter number (KC), Ursell number ($U_R$), modified Ursell number ($U_{RP}$) and ratio of velocities ($U_c/U_c+U_m$) are analyzed. In the mixing region combined with waves and currents, The Froude number of single parameters is the main parameter to cause the local scour around a slender pile due to waves and current and this means that current governs the scour within any limits of the currents.