• Title/Summary/Keyword: Scissors Structure

Search Result 14, Processing Time 0.022 seconds

Characteristics and a Variation of Profile Shape in Scissors Deployable Structure (시저스 전개형 구조의 형상변화와 구조특성)

  • Choi, Eun-Mi;Lee, Ju-Na;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.57-64
    • /
    • 2008
  • In scissors deployable structure which could be easily removed by folding it, a method of curvature variation in the profile and the structural characteristics were examined. At first, the relation between the profile curvature and a eccentricity of joint in scissors members is presented by a formula and a graph. And then, the structural characters of scissors members with the curvature variation are presented by analysing a several models based on this relation. Also, a real modeling study is achieved in accordance with this composition method and the possibilities to be developed with the expected profile shape was examined.

  • PDF

A Study on the Facade Design Using Scissors System (시저스 시스템을 적용한 파사드 디자인에 관한 연구)

  • Kim, Seung-Deog;Jung, HyeWon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2017
  • Recently, the interest in the smart buildings is increasing in the architecture field. Among them, a research of facade design using a transformable system that can adjust the effect of the external environment is in progress. One of a typical example of the deployable system is a Scissors system that can change shape by using the geometric conditions of a unit member. Scissors system is a high-tech structural system which can construct the deployable plan and curved space by using the SLE (Scissors-Like Element) consisted of two Bar and Pivot. If the facade is designed by applying Scissors system, it is possible to maximize the performance and aesthetic effect of the structure by using a shape change of the line member. This paper presents a study of deployable facade design applying hybrid-typed Scissors system. A new deployable pattern of facade design is developed by combining Angulated Scissors system and tessellation pattern. Applying the deployable pattern a double skin construction method which is to add an outer wall for design, it raises three dimensional effects and can maximize the artistic essence of the change in shape upon deployment.

Dynamic Modeling of Scissors Structure and Stiffness Analysis Based on Deployed Configuration (전개형 시저스 구조물의 동역학적 모델링 및 전개 완료 형상에 따른 강성 분석)

  • Kim, Tae-Hyun;Suh, Jong-Eun;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.405-413
    • /
    • 2019
  • Deployable structures are widely used for space mission because of their advantages in storage and transportation coming from its transformability of configuration. The space structures should be designed with high stiffness to withstand the various types of disturbance that they encounter during operation. Especially for the deployable structures, the internal forces loaded on the component or the stiffness at its deployed configuration should be analyzed since they usually consist of the thin and light structures. In this paper, a dynamic model of the scissors structure is established and its deployment behavior is analyzed, especially focusing on the deployment speed and the internal force on each joint. In addition, modal analysis is carried out for the 1-stage and 2-stage scissors structures in order to analyze the stiffness of the scissors structure based on its deployed configuration. The fundamental mode shapes and natural frequencies are analyzed and discussed.

Study on Fatigue Life Estimation for Aircraft Engine Support Structure (항공기 엔진 지지구조물의 피로수명 해석에 관한 연구)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1667-1674
    • /
    • 2010
  • The fatigue life is estimated while determining the reliability of aircraft structures. In this study, the estimation of fatigue life was carried out on the basis of a cumulative damage theory; the working S-N curve and the equivalent stress on the engine support structure significantly affect the safety of the aircraft. The maximum stress observed was 1,080 MPa in the case of scissors link under crash load condition, and there was a 5% margin for the allowable stress corresponding to the temperature reduction factor. The maximum stress was 876 MPa, and the stress equation coefficient had a maximum value of 0.019 MPa/N in the case of scissors link under fatigue loads. In the results of the fatigue life analysis, the safety life in a fretting area of scissors link upper part was 416,667 flight hour, and other parts showed to infinite life. Therefore, it was demonstrated that the fatigue life requirement of aircraft engine support structure (scissors link, straight link) could be satisfied.

A Study on Stabilizing Method of Deployable Systems (전개구조시스템의 안정화 방법에 관한 연구)

  • Kim, Seung-Deog;Park, Sun-Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2014
  • Deployable structure is a system on which the study is being actively performed in various fields including architecture field. However, There is little study which can enhance the practicality since the interpretation condition is difficult as the unstable structure in the architecture field. In this study, the Scissors system has been focused on among the Deployable structure. The structure was developed using the Scissors system and the Mock-up test was performed. Through this, the unfolding method was proposed and the practicability was surveyed through the specific design of the Test model. Also, the structure stability was reviewed through structure analysis of Mock-up test model. and stabilizing method was proposed.

An Experimental Study on the Application of Shelter Structure Using Deployable Scissors Systems (전개가능형 가위구조시스템을 이용한 쉘터구조물에의 적용성 검토에 관한 실험적 연구)

  • Lim, Ji-Sub;Choi, Sang-Soon;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.3
    • /
    • pp.101-108
    • /
    • 2014
  • Recently, natural disasters such as earthquake, tsunami, typhoon and tornado are increasing, and cause huge economical loses and victim. Thus, when the disaster occurs, it is important to prepare emergency evacuation shelters for fast and easy construction compared to general building system. And, deployable structures will provide a great help for such aim. Deployable structures have the great advantage of being faster and easier to erect and dismantle compared to conventional building forms. In this study, we confirm the possibility of deployment for shelter structures using scissor structure system. First, Basic model was performed to recognize the appllicability of the deployable systems of the dome-shaped structure. Second, Advanced model that more improved inner space and deployment mechanism was confirmed.

Structure and Strength Analysis of Scissors Boom of Heavy Load Transporter through Finite Element Analysis (유한요소해석을 통한 중량물 이동대차 시저스붐의 구조 및 강도 해석)

  • Hyeon-Ho Lim;Chang-Min Yang;Kwon-Woong Choi;Dae-Woo Choi
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.61-67
    • /
    • 2023
  • Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

PID Controller Based on Sliding Mode Control for Bridge Inspection Robot (교량 탐사 로봇을 위한 Sliding Mode 제어를 기반으로 한 PID 제어기)

  • Lee, An-Yong;Lee, Seung-Chul;Oh, Je-Keun;Choi, Young-Jin;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.285-286
    • /
    • 2007
  • This paper presents a robust controller in order to handle the guide rail vibrations of Bridge Inspection System. While a Bridge Inspection Robot moves on guide rails with vibration by weight occurs. Therefore, Guide rail as structure like cantilever beam appears vibration by weight of Bridge Inspection Robot. The Z axis of Bridge Inspection Robot operates with Scissors structure. Bridge Inspection Robot is used 'PID Controller based on Sliding Mode control' for position control with Z axis. At the result of, this paper is applied to simulation about position control regarding vibration to occur with Z axis.

  • PDF

A Study on the Architectural Characteristics of Modern Railway Station in Gyeongju (경주관내 근대 철도역사(鐵道驛舍)의 건축적 특성에 관한 연구)

  • Choi, Moo-Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.14 no.3
    • /
    • pp.109-119
    • /
    • 2012
  • This study aims to analyze architectural characteristics of railway station facilities which were built with development of railroads from Japanese Colonial Period to 1950's. To achieve this goals, 7 railway stations in Gyeongju area that are worth preserving were set up as research targets. For this study, I analyzed literature of the railway station and drawings which the KORAL Daegu Branch is keeping. Railway stations without a construction drawing investigated a direct visit. After analyzing the railway station facilities, the architectural properties such as plan, elevation and section have been identified. The results are as follows. First, Each modern railway station is usually consisted of waiting room and office, and ancillary spaces have been added. Over the years, however, the space was expanded horizontally. In that case, the structure and finish materials have been changed, like now. Second, Most of the roof shape is 'Matbae'(gable roof), especially Gyeongju station and Bulguksa Station are 'Woojingak roof. The roof structure is truss structure, especially as Pratt and Scissors type, but Gyeongju Station's structure is a reinforced concrete. Third, main doorway of waiting room is located in the center of the front gable. However, small stations like 'Ahwa' and 'Ipsil' station to ensure the passengers' waiting area are placed next to the office area.