• Title/Summary/Keyword: Scintillator

Search Result 282, Processing Time 0.031 seconds

Dose Distribution of 100 MeV Proton Beams in KOMAC by using Liquid Organic Scintillator (액체 섬광체를 이용한 100 MeV 양성자 빔의 선량 분포 평가)

  • Kim, Sunghwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.621-626
    • /
    • 2017
  • In this paper, an optical dosimetric system for radiation dose measurement is developed and characterized for 100 MeV proton beams in KOMAC(Korea Multi-Purpose Accelerator Complex). The system consists of 10 wt% Ultima GoldTM liquid organic scintillator in the ethanol, a camera lens(50 mm / f1.8), and a high sensitivity CMOS(complementary metal-oxide-semiconductor) camera (ASI120MM, ZWO Co.). The FOV(field of view) of the system is designed to be 150 mm at a distance of 2 m. This system showed sufficient linearity in the range of 1~40 Gy for the 100 MeV proton beams in KOMAC. We also successfully got the percentage depth dose and the isodose curves of the 100 MeV proton beams from the captured images. Because the solvent is not a human tissue equivalent material, we can not directly measure the absorbed dose of the human body. Through this study, we have established the optical dosimetric procedure and propose a new volume dose assessment method.

Light Collection Efficiency of Large-volume Plastic Scintillator for Radiation Portal Monitor (방사선 포털 모니터용 대용적 플라스틱 섬광체 내부 빛 수집 효율 평가)

  • Lee, Jin Hyung;Kim, Jong Bum
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.157-165
    • /
    • 2017
  • In this paper, we calculate the light photons collection efficiency of large-volume plastic scintillation detector mainly used for radiation portal monitor (RPM). A Monte Carlo light photon transport code, DETECT2000, were used to quantitatively evaluate light collection efficiency of plastic scintillation detector. DETECT2000 calculated the placement of light collection efficiency based on the energy spectrum. We calculated the light collection efficiency relative to the position of the energy spectrum that proportional to the placement of the source. The $850{\times}285{\times}65mm^3$ size of polyvinyl toluene (PVT) scintillator was used for measurements. Through DETECT2000 simulation, the light collection efficiency of $5{\times}5$ arrays were calculated and verification was performed by comparing with experimentally measured. And then, the corrected MCNP simulation by applying the light collection efficiency in $21{\times}13$ arrays was compared and analyzed. Comparing the Monte Carlo simulation with measured results, it shows an average difference of 10.1% in $5{\times}5$ arrays. Particularly, about twice of the difference was found in the edge of first column, which coupled with PMT. In whole $5{\times}5$ array, the overall ratio was the same except for the first column. And then comparing the energy spectra of the $21{\times}13$ array with and without the light collection efficiency, it shows a difference of 6.69% in Compton edge area. The DETECT2000 based light collection efficiency simulation showed well agreement with the point source experiment. And comparing with measured energy spectra, we could compare the differences according to whether or not the light collection efficiency was applied. As a results, it is possible to increase the accuracy and reliability of Monte Carlo simulation results by pre-calculating the light collection efficiency according to the PVT geometry by using the DETECT2000.

A feasibility study of using a 3D-printed tumor model scintillator to verify the energy absorbed to a tumor

  • Kim, Tae Hoon;Lee, Sangmin;Kim, Dong Geon;Jeong, Jae Young;Yang, Hye Jeong;Schaarschmidt, Thomas;Choi, Sang Hyoun;Cho, Gyu-Seok;Kim, Yong Kyun;Chung, Hyun-Tai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3018-3025
    • /
    • 2021
  • The authors developed a volumetric dosimetry detector system using in-house 3D-printable plastic scintillator resins. Three tumor model scintillators (TMSs) were developed using magnetic resonance images of a tumor. The detector system consisted of a TMS, an optical fiber, a photomultiplier tube, and an electrometer. The background signal, including the Cherenkov lights generated in the optical fiber, was subtracted from the output signal. The system showed 2.1% instability when the TMS was reassembled. The system efficiencies in collecting lights for a given absorbed energy were determined by calibration at a secondary standard dosimetry laboratory (kSSDL) or by calibration using Monte Carlo simulations (ksim). The TMSs were irradiated in a Gamma Knife® IconTM (Elekta AB, Stockholm, Sweden) following a treatment plan. The energies absorbed to the TMSs were measured and compared with a calculated value. While the measured energy determined with kSSDL was (5.84 ± 3.56) % lower than the calculated value, the energy with ksim was (2.00 ± 0.76) % higher. Although the TMS detector system worked reasonably well in measuring the absorbed energy to a tumor, further improvements in the calibration procedure and system stability are needed for the system to be accepted as a quality assurance tool.

The detection efficiency study of NaI(Tl) scintillation detector with the different numbers of SiPMs

  • Wang, Bao;Zhang, Xiongjie;Wang, Qingshan;Wang, Dongyang;Li, Dong;Xiahou, Mingdong;Zhou, Pengfei;Ye, Hao;Hu, Bin;Zhang, Lijiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2564-2571
    • /
    • 2022
  • SiPMs are generally coupled into whole columns in gamma energy spectrum measurement, but the relationship between the distribution of whole SiPM columns and the energy resolution of the measured energy spectra is rarely reported. In this work, ∅ 3 × 3 inch NaI scintillator is placed on an 8 × 8 SiPM array, and the energy resolution of the 137Cs peak at 662 keV corresponding to the γ-ray is selected as a reference. Each SiPM is switched to explore the influence of the number of SiPM arrays, distribution position, and reflective layer on the energy resolution of SiPMs. Results show that without coupling, the energy resolution is greatly improved when the number of SiPMs ranges from 4 to 32. However, after 32 slices (the area covered by SiPMs relative to the scintillator reaches 25.9%), the improvement in energy resolution and total pulse count is not obvious. In addition, the position of SiPMs relative to the scintillator does not exert much impact on the energy resolution. Results also indicate that by adding a reflective film (ESR), the energy resolution of the tested group increases by 10.38% on average. This work can provide a reference for the design and application of miniaturized SiPM gamma spectrometers.

Towards a better understanding of detection properties of different types of plastic scintillator crystals using physical detector and MCNPX code

  • Ayberk Yilmaz;Hatice Yilmaz Alan;Lidya Amon Susam;Baki Akkus;Ghada ALMisned;Taha Batuhan Ilhan;H.O. Tekin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4671-4678
    • /
    • 2022
  • The purpose of this comprehensive research is to observe the impact of scintillator crystal type on entire detection process. For this aim, MCNPX (version 2.6.0) is used for designing of a physical plastic scintillation detector available in our laboratory. The modelled detector structure is validated using previous studies in the literature. Next, different types of plastic scintillation crystals were assessed in the same geometry. Several fundamental detector properties are determined for six different plastic scintillation crystals. Additionally, the deposited energy quantities were computed using the MCNPX code. Although six scintillation crystals have comparable compositions, the findings clearly indicate that the crystal composed of PVT 80% + PPO 20% has superior counting and detecting characteristics when compared to the other crystals investigated. Moreover, it is observed that the highest deposited energy amount, which is a result of the highest collision number in the crystal volume, corresponds to a PVT 80% + PPO 20% crystal. Despite the fact that plastic detector crystals have similar chemical structures, this study found that performing advanced Monte Carlo simulations on the detection discrepancies within the structures can aid in the development of the most effective spectroscopy procedures by ensuring maximum efficiency prior to and during use.

Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals (CsI:X(X=Li+,K+,Rb+단결정의 섬광특성)

  • Gang, Gap-Jung;Doh, Sih-Hong;Lee, Woo-Gyo;Oh, Moon-Young
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • CsI single crystals doped with lithium, potassium or rubidium were grown by using Czochralski method at Ar gas atmosphere. The energy resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 14.5%, 15.9% and 17.0% for $^{137}Cs$(0.662 MeV), respectively. The energy calibration curves of CsI(Li), CsI(K) and CsI(Rb) scintillators were linear for $\gamma$-ray energy. The time resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators measured by CFT(constant-fraction timing method) were 9.0 ns, 14.7 ns and 9.7 ns, respectively. The fluorescence decay times of CsI(Li:0.2 mole%) scintillator had a fast component and slow one of ${\tau}_1=41.2\;ns$ and ${\tau}_2=483\;ns$, respectively. The fluorescence decay times of CsI(K:0.5 mole%) scintillator were ${\tau}_1=47.2\;ns$ and ${\tau}_2=417\;ns$. And the fluorescence decay times of CsI(Rb:1.5 mole%) scintillator were ${\tau}_1=41.3\;ns$ and ${\tau}_2=553\;ns$. The phosphorescence decay times of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 0.51 s, 0.57 s and 0.56 s, respectively.

Gamma Ray Detection Processing in PET/CT scanner (PET/CT 장치의 감마선 검출과정)

  • Park, Soung-Ock;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The PET/CT scanner is an evolution in image technology. The two modalities are complementary with CT and PET images. The PET scan images are well known as low resolution anatomic landmak, but such problems may help with interpretation detailed anatomic framework such as that provided by CT scan. PET/CT offers some advantages-improved lesion localization and identification, more accurate tumor staging. etc. Conventional PET employs tranmission scan require around 4 min./bed position and 30 min. for whole body scan. But PET/CT scanner can reduced by 50% in whole body scan. Especially nowadays PET scanner LSO scintillator-based from BGO without septa and operate in 3-D acquisition mode with multidetectors CT. PET/CT scanner fusion problems solved through hardware rather than software. Such device provides with the capability to acquire accurately aligned anatomic and functional images from single scan. It is very important to effective detection from gamma ray source in PETdetector. And can be offer high quality diagnostic images. So we have study about detection processing of PET detector and high quality imaging process.

  • PDF

PET System Design using a Scintillator with a Size of 0.8 mm to Improve Spatial Resolution (공간분해능 향상을 위한 0.8 mm 크기의 섬광체를 사용한 PET 시스템 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.499-504
    • /
    • 2022
  • Positron emission tomography (PET) uses a very small scintillator to achieve exellent spatial resolution. Therefore, in this study, a PET system using a scintillator to 0.8 mm size was designed and the performance was evaluated. Anihilation radiation was generated from the center of the field of view (FOV) to the outskirts at intervals of 10 mm, and counted simultaneously. The image was reconstructed using the coincidence data, and the spatial resolution was calculated by acquiring the full width at half maximum through the profile. The spatial resolution at the center of the FOV was 1.02 mm, showing a very good result, and the spatial resolution decreased as it was located at the outer edge. To evaluate the phantom image, the Derenzo phantom was constructed to acquire the image, and the degree of classification between radiation sources was evaluated through profile analysis. The result showed that the distance between the radiation sources was larger than the spatial resolution of the radiation sources at each location, and it was confirmed that the radiation sources were distinguished through this. When the PET system designed in this study is applied to PET for small animals, it is considered that excellent performance can be secured through the characteristic of very good spatial resolution.