• Title/Summary/Keyword: Scientific Payload

Search Result 34, Processing Time 0.025 seconds

BAFFLE DESIGN OF FIMS (과학기술위성 1호 원자외선 분광기 FIMS의 배플 설계)

  • Yuk, I.S.;Seon, K.I.;Ryu, K.S.;Jin, H.;Park, J.H;Nam, U.W.;Lee, D.H.;Oh, S.H.;Rhee, J.G.;Han, W.Y.;Min, K.W.;Edelstein, Jerry;Korpela, Eric
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.87-95
    • /
    • 2003
  • FIMS (Far-ultraviolet IMaging Spectrograph) is the main payload of STSAT-1 satellite which was successfully launched on September 27, 2003. The optical system of FIMS consists of two sets of parabolic cylinder mirror, slit, ellipsoidal reflection grating, and baffle system. We designed two types of baffle system for the FIMS: FOV baffle and order baffle. FOV baffle in the mirror house controls the field of view, and the order baffle in the vacuum box blocks the rays reflected rays by different orders.

TRIFLE DIFFERENCE APPROACH TO LOW EARTH ORBITER PRECISION ORBIT DETERMINATION

  • Kwon, Jay-Hyoun;Grejner brzezinska, Dorota-A.;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. p-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy off-KOD applied to CHAMP (CHAllenging Min-isatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.

Atmospheric Profiles from KOMPSAT-5 Radio Occultation : A Simulation Study

  • Lee, Woo-Kyoung;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk;Yoon, Jae-Cheol;Lee, Jin-Ho;Chun, Yong-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.53-56
    • /
    • 2006
  • KOMPSAT (KOrea Multi-Purpose SATellite)-5 for the earth observation and scientific research is scheduled to launch in 2009. The second payload, AOPOD (Atmosphere Occultation and Precision Orbit Determination) system, consists of a space-borne dual frequency GPS receiver and a laser retro reflector. GPS radio occultations from AOPOD system can be used to generate profiles of refractivity, temperature, pressure and water vapor in the neutral atmosphere with a high vertical resolution. Also the radio occultation in the ionosphere provides an inexpensive tool of vertical electron density profile. Currently, many LEO missions with GPS radio occultation receivers are on orbit and more GPS occultation missions are planed to launch in the near future. In this paper, we simulated radio occultation measurements from KOMPSAT-5 and retrieved atmospheric profiles using the simulated data.

  • PDF

Development of HDF Browser for the Utilization of EOC Imagery

  • Seo, Hee-Kyung;Ahn, Seok-Beom;Park, Eun-Chul;Hahn, Kwang-Soo;Choi, Joon-Soo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2002
  • The purpose of Electro-Optical Camera (EOC), the primary payload of KOMPSAT-1, is to collect high resolution visible imagery of the Earth including Korean Peninsula. EOC images will be distributed to the public or many user groups including government, public corporations, academic or research institutes. KARI will offer the online service to the users through internet. Some application, e.g., generation of Digital Elevation Model (DEM), needs a secondary data such as satellite ephemeris data, attitude data to process the EOC imagery. EOC imagery with these ancillary information will be distributed in a file of Hierarchical Data Format (HDF) file formal. HDF is a physical file format that allows storage of many different types of scientific data including images, multidimensional data arrays, record oriented data, and point data. By the lack of public domain softwares supporting HDF file format, many public users may not access EOC data without difficulty. The purpose of this research is to develop a browsing system of EOC data for the general users not only for scientists who are the main users of HDF. The system is PC-based and huts user-friendly interface.

System Requirement Review of Lunar Surface magnetometer on the CLPS program

  • Jin, Ho;Kim, Khan-Hyuk;Lee, Seongwhan;Lee, Hyojeong;Seon, Daerac;Jung, Byungwook;Jang, Yunho;Park, Hyeonhu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute is participating as a South Korean partner in the Commercial Lunar Payload Services (CLPS)of NASA. In response, the Korea Astronomy and Space Science Institute is currently conducting basic research for the development of four candidate instrument payloads. The magnetic field instrument is one of them and it's scientific mission objective is the moon's surface magnetic field investigation. Therefore, the development requirement of the lunar surface magnetic field instrument were derived and the initial conceptual design was started. The magnetic field instrument has a 1.2 meter boom which has two three-axis fluxgate magnetometer sensors and one gyro sensor to get a attitude information of the boom. The concept of measuring the lunar surface magnetic field will carry out using multiple sensors by placing semiconductor type magnetic field sensors inside the electric box including boom mounted fluxgate sensors. In order to overcome the very short development period, we will use the KPLO (Korean Lunar Pathfinder Orbiter) magnetometer design and parts to improve reliabilities for this instrument. In this presentation, we introduce the instrument requirements and conceptual design for the Lunar surface magnetic field instruments.

  • PDF

An Optimization Model for Determining the Number of Military Cargo-plane (군용 수송기 소요 산정 최적화 모형)

  • Hee Soo Kim;Moon Gul Lee;Ho Seok Moon;Seong In Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.160-172
    • /
    • 2023
  • In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF