• Title/Summary/Keyword: Science-based Cluster

Search Result 1,262, Processing Time 0.025 seconds

An Effective Design of Process Mean Control Chart in Subgroups Based on Cluster Sampling Type

  • Nam, Ho-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.939-950
    • /
    • 2003
  • Control charts are very useful tool for monitoring of process characteristics. This paper discusses the problem of design of control limits when the subgroups are composed by cluster sampling type. As an alternative method of design of control limits XbBar chart is proposed, which uses the control limits based on the variation between subgroups instead of using classical variation within subgroups. Two examples are presented for reasonable design of control limits and conditions of subgroups based on the cluster sampling. Through examples the guidelines for making proper control limits are proposed.

  • PDF

NUND: Non-Uniform Node Distribution in Cluster-based Wireless Sensor Networks

  • Ren, Ju;Zhang, Yaoxue;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2302-2324
    • /
    • 2014
  • Cluster-based wireless sensor network (WSN) can significantly reduce the energy consumption by data aggregation and has been widely used in WSN applications. However, due to the intrinsic many-to-one traffic pattern in WSN, the network lifetime is generally deteriorated by the unbalanced energy consumption in a cluster-based WSN. Therefore, energy efficiency and network lifetime improvement are two crucial and challenging issues in cluster-based WSNs. In this paper, we propose a Non-Uniform Node Distribution (NUND) scheme to improve the energy efficiency and network lifetime in cluster-based WSNs. Specifically, we first propose an analytic model to analyze the energy consumption and the network lifetime of the cluster-based WSNs. Based on the analysis results, we propose a node distribution algorithm to maximize the network lifetime with a fixed number of sensor nodes in cluster-based WSNs. Extensive simulations demonstrate that the theoretical analysis results determined by the proposed analytic model are consistent with the simulation results, and the NUND can significantly improve the energy efficiency and network lifetime.

Study of galaxies in extensive area of the Virgo cluster

  • Kim, Suk;Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Lee, Youngdae;Chung, Jiwon;Lee, Woong;Chung, Aeree;Yoon, Hyein
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2016
  • Nearby galaxy clusters and their surrounding regions represent the current endpoint of evolution galaxy cluster evolution. We present a new catalog of 1589 galaxies, what we call Extended Virgo Cluster Catalog (EVCC), in wider area of the Virgo cluster based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The EVCC covers an area 5.2 times larger than the footprint of the classical Virgo Cluster Catalog, and reaches out to 3.5 times the virial radius of the Virgo cluster. The EVCC contains fundamental information such as membership, morphology, and photometric parameters of galaxies. The EVCC defines a comprehensive galaxy sample covering a wider range in galaxy density that is significantly different from the inner region of the Virgo cluster. It will be the foundation for forthcoming galaxy evolution studies in the extended Virgo cluster region, complementing ongoing and planned Virgo cluster surveys at various wavelengths. We also present the large scale structures in the field around the Virgo cluster. We identified seven galaxy filaments and one possible sheet in three dimensions of super-galactic coordinates based on the HyperLEDA database. By examining spatial distribution and Hubble diagram of galaxies, we found that six filaments are directly associated with the main body of the Virgo cluster. On the other hand, one filament and one sheet are structures located at background of the main body of Virgo cluster. The EVCC and the filament structures will be the foundation for forthcoming studies of galaxy evolution in various environments as well as buildup of the galaxy cluster at z ~ 0, complementing ongoing and planned Virgo cluster surveys at various wavelengths.

  • PDF

A Hybrid Genetic Algorithm for K-Means Clustering

  • Jun, Sung-Hae;Han, Jin-Woo;Park, Minjae;Oh, Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.330-333
    • /
    • 2003
  • Initial cluster size for clustering of partitioning methods is very important to the clustering result. In K-means algorithm, the result of cluster analysis becomes different with optimal cluster size K. Usually, the initial cluster size is determined by prior and subjective information. Sometimes this may not be optimal. Now, more objective method is needed to solve this problem. In our research, we propose a hybrid genetic algorithm, a tree induction based evolution algorithm, for determination of optimal cluster size. Initial population of this algorithm is determined by the number of terminal nodes of tree induction. From the initial population based on decision tree, our optimal cluster size is generated. The fitness function of ours is defined an inverse of dissimilarity measure. And the bagging approach is used for saying computational time cost.

  • PDF

New Galaxy Catalog of the Virgo Cluster

  • Kim, Suk;Rey, Soo-Chang;Jerjen, Helmut;Lisker, Thorsten;Sung, Eon-Chang;Lee, Youngdae;Chung, Jiwon;Pak, Mina;Yi, Wonhyeong;Lee, Woong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.50-50
    • /
    • 2014
  • We present a new catalog of galaxies in the wider region of the Virgo cluster, based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The Extended Virgo Cluster Catalog (EVCC) covers an area of 725 deg2 or 60.1 Mpc2. It is 5.2 times larger than the footprint of the classical Virgo Cluster Catalog (VCC) and reaches out to 3.5 times the virial radius of the Virgo cluster. We selected 1324 spectroscopically targeted galaxies with radial velocities less than 3000 km s-1. In addition, 265 galaxies that have been missed in the SDSS spectroscopic survey but have available redshifts in the NASA Extragalactic Database are also included. Our selection process secured a total of 1589 galaxies of which 676 galaxies are not included in the VCC. The certain and possible cluster members are defined by means of redshift comparison with a cluster infall model. We employed two independent and complementary galaxy classification schemes: the traditional morphological classification based on the visual inspection of optical images and a characterization of galaxies from their spectroscopic features. SDSS u, g, r, i, and z passband photometry of all EVCC galaxies was performed using Source Extractor. We compare the EVCC galaxies with the VCC in terms of morphology, spatial distribution, and luminosity function. The EVCC defines a comprehensive galaxy sample covering a wider range in galaxy density that is significantly different from the inner region of the Virgo cluster. It will be the foundation for forthcoming galaxy evolution studies in the extended Virgo cluster region, complementing ongoing and planned Virgo cluster surveys at various wavelengths.

  • PDF

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

The Study for Authentication Protocol Based on Cluster in Ad Hoc Network (Ad Hoc 네트워크에서의 클러스터 기반 인증 프로토콜에 대한 연구)

  • Lee, Keun-Ho;Suh, Heyi-Sook;Han, Sang-Bum;Hwang, Chong-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.2017-2020
    • /
    • 2003
  • 오늘날의 무선 이동 통신의 발전은 상당한 발전을 이루고 있다. 이동 통신 분야의 한 분야가 Ad hoc 네트워크 분야일 것이다. Ad hoc 네트워크는 기존의 고정된 네트워크의 한계를 뛰어 넘는 네트워크이다. 본 논문에서는 Ad hoc 네트워크의 클러스터 기반에서의 인증에 대한 보안 프로토콜을 연구하였다. 클러스터 기반의 CBRP(Cluster Based Routing Protocol) 라우팅 프로토콜을 이용하여 클러스터끼리의 인증을 위한 CH(Cluster Head)에 대한 선출 과정에 대한 방법과 클러스터간의 인증을 위하여 CH(Cluster Head)간의 인증을 위한 방법을 제안하였다. 기존의 방법은 CH간의 신뢰성을 전제로 하여 작성하였다. 본 논문에서도 신뢰성을 위하여 MCH(Main Cluster Head)를 두어 CH간의 신뢰성을 보장함으로써 상호 클러스터간의 인증을 위한 프로토콜을 설계하였다. MCH에서의 CH에 대한 인증 프로토콜을 설계함으로써 클러스터간의 인증의 신뢰성을 높일 수 있다.

  • PDF

A Two level Detection of Routing layer attacks in Hierarchical Wireless Sensor Networks using learning based energy prediction

  • Katiravan, Jeevaa;N, Duraipandian;N, Dharini
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4644-4661
    • /
    • 2015
  • Wireless sensor networks are often organized in the form of clusters leading to the new framework of WSN called cluster or hierarchical WSN where each cluster head is responsible for its own cluster and its members. These hierarchical WSN are prone to various routing layer attacks such as Black hole, Gray hole, Sybil, Wormhole, Flooding etc. These routing layer attacks try to spoof, falsify or drop the packets during the packet routing process. They may even flood the network with unwanted data packets. If one cluster head is captured and made malicious, the entire cluster member nodes beneath the cluster get affected. On the other hand if the cluster member nodes are malicious, due to the broadcast wireless communication between all the source nodes it can disrupt the entire cluster functions. Thereby a scheme which can detect both the malicious cluster member and cluster head is the current need. Abnormal energy consumption of nodes is used to identify the malicious activity. To serve this purpose a learning based energy prediction algorithm is proposed. Thus a two level energy prediction based intrusion detection scheme to detect the malicious cluster head and cluster member is proposed and simulations were carried out using NS2-Mannasim framework. Simulation results achieved good detection ratio and less false positive.

Opportunity Coefficient for Cluster-Head Selection in LEACH Protocol

  • Soh, Ben;AlZain, Mohammed;Lozano-Claros, Diego;Adhikari, Basanta
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • Routing protocols play a pivotal role in the energy management and lifespan of any Wireless Sensor Network. Lower network lifetime has been one of the biggest concerns in LEACH protocol due to dead nodes. The LEACH protocol suffers from uneven energy distribution problem due to random selection of a cluster head. The cluster head has much greater responsibility compared to other non- cluster head nodes and consumes greater energy for its roles. This results in early dead nodes due to energy lost for the role of cluster- head. This study proposes an approach to balance the energy consumption of the LEACH protocol by using a semi-deterministic opportunity coefficient to select the cluster head. This is calculated in each node with the battery energy level and node ID. Ultimately, based on the opportunity cost, cluster head will be selected and broadcasted for which other nodes with higher opportunity cost will agree. It minimizes the chances of nodes with lower battery level being elected as cluster head. Our simulation experiments demonstrate that cluster heads chosen using our proposed algorithm perform better than those using the legacy LEACH protocol.

A Cluster-Based Energy-Efficient Routing Protocol without Location Information for Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Lee, Min-Sun;Byeon, Ok-Hwan
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-54
    • /
    • 2005
  • With the recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have become available. However, energy-efficient routing is one of the most important key technologies in wireless sensor networks as sensor nodes are highly energy-constrained. Therefore, many researchers have proposed routing protocols for sensor networks, especially cluster-based routing protocols, which have many advantages such as reduced control messages, bandwidth re-usability, and improved power control. Some protocols use information on the locations of sensor nodes to construct clusters efficiently. However, it is rare that all sensor nodes know their positions. In this article, we propose another cluster-based routing protocol for sensor networks. This protocol does not use information concerning the locations of sensor nodes, but uses the remaining energy of sensor networks and the desirable number of cluster heads according to the circumstances of the sensor networks. From performance simulation, we found that the proposed protocol shows better performance than the low-energy adaptive clustering hierarchy (LEACH).