• Title/Summary/Keyword: Science assessment framework

Search Result 271, Processing Time 0.027 seconds

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

Climate Change and Regional Land Use Planning : The Formulation of California Senate Bill No. 375 (기후변화와 광역토지사용계획: 캘리포니아의 Senate Bill No. 375의 사례)

  • Choi, Hyun-Sun;Choi, Simon
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.3-29
    • /
    • 2010
  • This paper explores how effectively the newly introduced planning process - California Senate Bill No. 375 will achieve the regional GHG emissions target under the California policy and planning framework and how well incentive based environmental policy might perform. The new legislation creates a future growth scenario to reduce greenhouse gas (GHG) emissions with incentives as means of implementation of AB 32 - the Global Warming Solution Act of 2006 and includes five important policy and planning aspects: 1) the role of sustainable communities strategies (SCS) as one of the key elements in their regional transportation plans; 2) planning for transportation and housing; 3) specified incentives for the implementation of SCS; 4) the regional planning approach toward reducing GHG emissions; and the role of the California Air Resources Board to establish the regional GHG emissions target. This has significant implications for regional and environmental planning with incentives - resources allocation and approval process.

  • PDF

Review of Qualitative Approaches for the Construction Industry: Designing a Risk Management Toolbox

  • Zalk, David M.;Spee, Ton;Gillen, Matt;Lentz, Thomas J.;Garrod, Andrew;Evans, Paul;Swuste, Paul
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.105-121
    • /
    • 2011
  • Objectives: This paper presents the framework and protocol design for a construction industry risk management toolbox. The construction industry needs a comprehensive, systematic approach to assess and control occupational risks. These risks span several professional health and safety disciplines, emphasized by multiple international occupational research agenda projects including: falls, electrocution, noise, silica, welding fumes, and musculoskeletal disorders. Yet, the International Social Security Association says, "whereas progress has been made in safety and health, the construction industry is still a high risk sector." Methods: Small- and medium-sized enterprises (SMEs) employ about 80% of the world's construction workers. In recent years a strategy for qualitative occupational risk management, known as Control Banding (CB) has gained international attention as a simplified approach for reducing work-related risks. CB groups hazards into stratified risk 'bands', identifying commensurate controls to reduce the level of risk and promote worker health and safety. We review these qualitative solutions-based approaches and identify strengths and weaknesses toward designing a simplified CB 'toolbox' approach for use by SMEs in construction trades. Results: This toolbox design proposal includes international input on multidisciplinary approaches for performing a qualitative risk assessment determining a risk 'band' for a given project. Risk bands are used to identify the appropriate level of training to oversee construction work, leading to commensurate and appropriate control methods to perform the work safely. Conclusion: The Construction Toolbox presents a review-generated format to harness multiple solutions-based national programs and publications for controlling construction-related risks with simplified approaches across the occupational safety, health and hygiene professions.

A Multi-Perspective Benchmarking Framework for Estimating Usable-Security of Hospital Management System Software Based on Fuzzy Logic, ANP and TOPSIS Methods

  • Kumar, Rajeev;Ansari, Md Tarique Jamal;Baz, Abdullah;Alhakami, Hosam;Agrawal, Alka;Khan, Raees Ahmad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.240-263
    • /
    • 2021
  • One of the biggest challenges that the software industry is facing today is to create highly efficient applications without affecting the quality of healthcare system software. The demand for the provision of software with high quality protection has seen a rapid increase in the software business market. Moreover, it is worthless to offer extremely user-friendly software applications with no ideal security. Therefore a need to find optimal solutions and bridge the difference between accessibility and protection by offering accessible software services for defense has become an imminent prerequisite. Several research endeavours on usable security assessments have been performed to fill the gap between functionality and security. In this context, several Multi-Criteria Decision Making (MCDM) approaches have been implemented on different usability and security attributes so as to assess the usable-security of software systems. However, only a few specific studies are based on using the integrated approach of fuzzy Analytic Network Process (FANP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) technique for assessing the significant usable-security of hospital management software. Therefore, in this research study, the authors have employed an integrated methodology of fuzzy logic, ANP and TOPSIS to estimate the usable - security of Hospital Management System Software. For the intended objective, the study has taken into account 5 usable-security factors at first tier and 16 sub-factors at second tier with 6 hospital management system softwares as alternative solutions. To measure the weights of parameters and their relation with each other, Fuzzy ANP is implemented. Thereafter, Fuzzy TOPSIS methodology was employed and the rating of alternatives was calculated on the foundation of the proximity to the positive ideal solution.

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.

Influence of vehicle for calcium hydroxide on postoperative pain: a scoping review

  • Aneja, Kritika;Gupta, Alpa;Abraham, Dax;Aggarwal, Vivek;Sethi, Simar;Chauhan, Parul;Singh, Arundeep;Kurian, Ansy Hanna;Jala, Sucheta
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • This review aims to identify the influence of the vehicle and its concentration used to carry calcium hydroxide (Ca(OH)2) medicament on postoperative pain. The protocol for this review was registered in the open science framework (Registration DOI-10.17605/OSF.IO/4Y8A9) and followed the guidelines provided by the Joanna Briggs Institute. Reporting was based on the preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR). Literature screening and searches were performed on PubMed/Medline, Scopus, and EBSCO hosts. Furthermore, additional records were manually analyzed using various sources. The selected studies were published in English and included the use of any vehicle adjunct to Ca(OH)2 to evaluate postoperative pain using qualitative and quantitative pain assessment tools. Descriptive analysis was conducted to review the study design, vehicle elements, and their effects. A preliminary search yielded 7584 studies, of which 10 were included. According to the data collected, the most commonly used Ca(OH)2 vehicles were chlorhexidine (CHX), normal saline, and camphorated paramonochlorophenol/glycerine (CPMC/glycerine), which had a significant effect on postoperative pain. Among the included studies, six evaluated the effect of CHX as a vehicle. It was observed that a higher concentration of the vehicle (2%) showed a favorable response in reducing postoperative pain. A majority of studies have validated a positive consequence of using a vehicle on postoperative pain. Although higher vehicle concentrations were found to alter postoperative pain levels, the data were insufficient to draw a firm conclusion. Our scoping review indicates that further clinical studies should focus on using different vehicles at various concentrations and application times to check for feasible and safe exposure in addition to providing pain relief.

A Systematic Review of Developmental Coordination Disorders in South Korea: Evaluation and Intervention (국내의 발달성협응장애(DCD) 연구에 관한 체계적 고찰 : 평가와 중재접근 중심으로)

  • Kim, Min Joo;Choi, Jeong-Sil
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.1
    • /
    • pp.69-82
    • /
    • 2021
  • Objective : This recent work intended to provide basic information for researchers and practitioners related to occupational therapy about Developmental Coordination Disorder (DCD) in South Korea. The previous research of screening DCD and the effects of intervention programs were reviewed. Methods : Peer-reviewed papers relating to DCD and published in Korea from January 1990 to December 2020 were systematically reviewed. The search terms "developmental coordination disorder," "development coordination," and "developmental coordination" were used to identify previous Korean research in this area from three representation database, the Research Information Sharing Service, Korean Studies Information Service System, and Google Scholar. We found a total of 4,878 articles identified through the three search engines and selected seventeen articles for analysis after removing those that corresponded to the overlapping or exclusion criteria. We adopted "the conceptual model" to analyze the selected articles about DCD assessment and intervention. Results : We found that twelve of the 17 studies showed the qualitative level of Level 2 using non-randomized approach between the two groups. The Movement Assessment Battery for Children and its second edition were the most frequently used tools in assessing children for DCD. Among the intervention studies, the eight articles (47%) were adopted a dynamic systems approach; a normative functional skill framework and cognitive neuroscience were each used in 18% of the pieces; and 11% of the articles were applied neurodevelopmental theory. Only one article was used a combination approach of normative functional skill and general abilities. These papers were mainly focused on the movement characteristics of children with DCD and the intervention effect of exercise or sports programs. Conclusion : Most of the reviewed studies investigated the movement characteristics of DCD or explore the effectiveness of particular intervention programs. In the future, it would be useful to investigate the feasibility of different assessment tools and to establish the effectiveness of various interventions used in rehabilitation for better motor performance in children with DCD.

Establishing Diagnosis Systems for Impaired Stream Ecosystem using Stream/River Ecosystem Survey and Health Assessment (수생태계 현황 조사 및 건강성 평가결과를 활용한 수생태계 훼손원인 진단체계 구축)

  • Lee, Jong-Won;Lee, Sang-Woo;Hwang, Soon-Jin;Jang, Min-Ho;Won, Doo-Hee;An, Kyung-Jin;Park, Hye-Jin;Lee, Junga
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The Stream/River Ecosystem Survey and Health Assessment has been carried out regarding the ecological health of the streams by the Ministry of Environment (MOE), South Korea. However, the sources of impairment of the stream ecosystem and the interactions between the sources, stressors, and the responses of impaired streams have not been taken into consideration. The purpose of this study is to propose the establishment of diagnosis systems for the impaired stream ecosystem because of the need to incorporate the same in the making of the policy to enable the recovery and improvement of the health of the impaired streams or river ecosystem. First, we define the concept of a diagnosis of the impaired stream or river ecosystem through a literature review. Second, through case studies [e.g., US CADDIS (Causal Analysis/Diagnosis Decision Information System), AUS. Eco Evidence, EU WFD (Water Framework Directive)], we try to develop the diagnosis system for the making of policy. In this study, the diagnosis system that is proposed consists of eight steps including the basic data collection, detecting or suspecting impairment, defining the impaired stream reach, identifying the biological impaired cases and listing the candidate causes, illustrating the interactive conceptual diagrams between stressors and responses, investigating the stressors-responses in the field, verifying causes and identifying the probable causes of the impaired cases, and summarizing and proposing the restoration of the streams. The results of this study will support and enable efficient decision-making for sustainable stream restoration and management based on the diagnosis of the probable causes for the impaired complex and the diverse stream ecosystem.