• Title/Summary/Keyword: Sciatic nerve injury

Search Result 108, Processing Time 0.028 seconds

Effects of the Herbal Medicine in Animal Models for Treatment of Sciatic Nerve Impairment: A Review of Animal Study Reports (좌골신경 손상에 대한 한약물 치료효과에 대한 실험논문 분석 - 국내외 한의계 연구를 중심으로 -)

  • Lee, Chi-ho;Lee, Jae-eun;Choi, Young-jun;Lee, Eun-jung;Oh, Min-seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.4
    • /
    • pp.9-21
    • /
    • 2016
  • Objectives This study is to review the effect of herbal medicine on treatment of sciatic nerve injury induced animal models reported in domestic & foreign journals. Methods 5 electronic databases (Pubmed, CAJ, RISS, Oasis, Koreantk) were searched with term as sciatic nerve injury, and animal study reports on sciatic nerve impairment with herbal medicine treatment were extracted. Results 31 articles were reviewd. All studies used SD rat. 26 studies used crush injury at the sciatic nerve using haemostatic forcep and 5 studies used sciatic nerve transection. 15 studies used single herb extract and 16 studies used complex herb medicine. Angelica gigantis radix was the most frequently used herb. Each study showed significant changes of improvement indicators from sciatic nerve impairment. Conclusions Various herb medicine are expected to have positive effects on sciatic nerve impairment.

The Effect of Electrical Stimulation on MAP2 Expression in the Cerebral Cortex following Sciatic Nerve Crush Injury in Rat (흰쥐 좌골신경손상 후 전기 자극이 대뇌피질에서의 MAP2 발현에 미치는 영향)

  • Ahn, Eun-Young;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.3
    • /
    • pp.391-401
    • /
    • 2005
  • The purpose of this study was to investigate the effect of electrical stimulation(EST) on MAP2(Microtubule Associated Protein 2) expression in cerebral cortex following sciatic nerve crush injury in rats. Twelve Sprague-Dawley adult female rats, six for control and six for experimental, were anesthetized and their sciatic nerves were crushed. The electrical stimulation (EST) was applicated with 3 Hz for 10 minuties in a day for muscles innervated sciatic nerve. The MAP2 expression in cerebral cortex was identified from immunohistochemistry against MAP2. The result of this study were as follow: 1) In control group, MAP2 immunoreactive neurons were observed but there no significant increase for 3 days. 2) MAP2 immunoreactive neurons were increased markably in experimental group than control group. 3) MAP2 immunoreactive neurons were increased markably after applicating with EST in sciatic nerve crush injury induced group from 2nd day. This study showed that the application of EST for muscles after sciatic nerve crushed injury made MAP2 immunoreactive neurons in the cerebral cortex increased. Therefore, the electrical stimulation on the peripheral site, denervated muscle, may facilitate MAP2 expression in the cerebral cortex.

  • PDF

Effects of Unilateral Sciatic Nerve Injury on Unaffected Hindlimb Muscles of Rats (일측성 좌골신경손상이 쥐의 정상측 뒷다리근에 미치는 영향)

  • Kim, Jin-Il;Choe, Myoung-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.39 no.3
    • /
    • pp.393-400
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effects of unilateral sciatic nerve injury on unaffected hindlimb muscles of rats. Methods: Adult male Sprague-Dawley rats were assigned to one of three groups: control(C) group(n=10) that had no procedures, sham(S) group(n=10) that underwent sham left sciatic nerve transection, and sciatic nerve transection(SNT) group(n=9) that underwent left sciatic nerve transection. At 15 days rats were anesthetized, and the soleus, plantaris and gastrocnemius muscles were dissected. Results: Muscle weight of the unaffected plantaris muscle in the SNT group was significantly lower than in the other two groups. Type II fiber cross-sectional areas of the unaffected plantaris and gastrocnemius muscles in the SNT group were significantly smaller than in the other two groups. The decrease of muscle weights and Type I, II fiber cross-sectional areas of the unaffected three muscles in the SNT group were significantly less than that of the affected three muscles. Conclusion: Hindlimb muscle atrophy occurs in the unaffected side after unilateral sciatic nerve injury, with changes in the plantaris and gastrocnemius muscle being more apparent than changes in the soleus muscle. These results have implications for nursing care, in the need to assess degree of muscle atrophy in unaffected muscles as well as affected muscles.

Effects of Herbal Bath on Functional Recovery and c-Fos Expression in the Ventrolateral Periaqueductal Gray Region of the Brain after Sciatic Crushed-Nerve Injury in Rats

  • Ryu, Moon-Sang;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.116-124
    • /
    • 2006
  • Peripheral nerve injuries are a commonly encountered clinical problem and often result in chronic pain and severe functional deficits. At the Dept. of Oriental Rehab. Medicine, we have used for pain control a herbal bath containing the following herbs: Harpagophytum radix, Atractylodes japonica and Corydalis tuber. In the present study, we investigated the effects of this herbal bath on the recovery rate of the locomotor function and the expression of c-Fos in the ventrolateral periaqueductal gray (vIPAG) region of the brain following sciatic crushed nerve injury in rats. In the present study, characteristic gait change with decreasing of the sciatic function index (SFI) was observed and c-Fos expression in the vIPAG was suppressed following sciatic crushed nerve injury in rats. Immersion into herbal bath enhanced SFI value and restored c-Fos expression in the vIPAG to the control value. These results suggest the herbal bath might activate neurons in the vIPAG, and could facilitate functional recovery from peripheral nerve injury.

  • PDF

Sciatic neurotmesis and periostitis ossificans progressiva due to a traumatic/unexpected glass injury: a case report

  • Berkay Yalcinkaya;Hasan Ocak;Ahmet Furkan Colak;Levent Ozcakar
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.1
    • /
    • pp.45-47
    • /
    • 2024
  • Peripheral nerves may be affected or injured for several reasons. Peripheral nerve damage can result from trauma, surgery, anatomical abnormalities, entrapment, systemic diseases, or iatrogenic injuries. Trauma and iatrogenic injuries are the most common causes. The ulnar, median, and radial nerves are the most injured nerves in the upper extremities, while the sciatic and peroneal nerves are the most injured nerves in the lower extremities. The clinical symptoms of peripheral nerve damage include pain, weakness, numbness/ tingling, and paresthesia. Therefore, early diagnosis and appropriate treatment of peripheral nerve injuries are crucial. If a peripheral nerve injury is left untreated, it can lead to severe complications and significant morbidity. The sciatic nerve is one of the most affected nerves. This nerve is generally injured by trauma and iatrogenic causes. Children are more susceptible to trauma than adults. Therefore, sciatic nerve injuries are observed in pediatric patients. When the sciatic nerve is damaged, pain, weakness, sensory loss, and gait disturbances can occur. Therefore, the diagnosis and treatment of sciatic nerve injuries are important to avoid unexpected consequences. Ultrasound can play an important role in the diagnosis of peripheral nerve injury and the follow-up of patients. The aim of this case report is twofold. First, we aimed to emphasize the critical role of ultrasonographic evaluation in the diagnosis of peripheral nerve injuries and pathologies. Second, we aimed to present this case, which has distinguishing features, such as the existence of periostitis ossificans progressiva with sciatic neurotmesis due to a traumatic glass injury.

Improved Axonal Regeneration Responses in the Injured Sciatic Nerve of Rats by Danggui Treatment (당귀가 rat의 손상된 좌골신경 재생에 미치는 영향)

  • Hong, Soon-Sung;Oh, Min-Seok
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.133-150
    • /
    • 2008
  • Objective: This study was performed to examine Danggui (DG, Angelica gigas Nakai)'s potential activity for promoting axonal regeneration in the injured peripheral nerve. Methods: Using the sciatic nerve in the rats, DG extract 5 ${\mu}l$(10 mg/ml in 0.5% saline) was dripped into the injury site of the nerve. Results: DG treatment facilitated axonal elongation responses in the distal portion to the injury site. GAP-43 protein levels were upregulated by DG treatment in the injured nerve and also in the DRG, suggesting the induction of GAP-43 expression at gene expression level after nerve injury. Phospho-Erk1/2 protein levels were upregulated in the injured nerve area and also in the DRG, suggesting retrograde transport of phospho-Erk1/2 protein from the injury area to the cell body. Cdc2 protein levels were slightly upregulated by DG treatment. DG treatment increased the number of non-neuronal cells in the distal portion to the injury site. Conclusions: The present data suggest that DG is effective for enhanced axonal regrowth after sciatic nerve injury.

  • PDF

The Effect of Ultrasound Irradiation on the Neural Cell Adhesion Molecules(NCAM) Expression in Rat Spinal Cord after the Sciatic Nerve Crush Injury (초음파가 흰쥐의 좌골신경 압좌손상 후 척수내 Neural Cell Adhesion Molecules의 발현에 미치는 영향)

  • Kim, Hyun-Ae;Han, Jong-Man
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.2
    • /
    • pp.41-55
    • /
    • 2007
  • Purpose: This study aimed to compare the effect on nerve regeneration of ultrasound irradiation in rats with peripheral nerve injury. Methods: To investigate alterations of the NCAM immunoreactivity in non-crushed part and crushed part of the spinal cord, the unilateral sciatic nerve of the rats were crushed. The expression of NCAM was used as the marked of peripheral nerve regeneration, and also plays an important role in developing nerve system. Experimental animals were sacrificed by perfusion fixation at post-injury 1, 3, 7, 14 days after ultrasound irradiation. The pulsed US was applied at a frequency of 1MHz and a spatial average-temporal average Intensity of 0.5W/of (20% pulse ratio) for 1 mins. The Luxol fast blue-cresyl violet stain were also done to observe the morphological changes. Results: Alteration of NCAM immunoreactivity in the crushed part and the non-crushed part of lower lumbar spinal cord were observed. NCAM-immunoreactivity cells were some increased in the dorsal horn lamina I, III and cell ventral horn at 1 day after unilateral sciatic nerve injury. However, there was not significant difference in the relationship between crushed part and non-crushed part. NCAM-inmmunoreactivity was remarkably increased at 3 days after unilateral sciatic nerve injuryin the gray matter and white matter. NCAM-immunoreactivity was increased in the ventral horn and post horn of experimental crushed part. Also, NCAM-immunoreactivity in large motor neurons in ventral horns lamina VIII, IX were increased at 7 days after unilateral sciatic nerve injury. At 14 days after sciatic nerve crushed injury, there was no significant difference. All group were decreased for 14 days. In the time course of NCAM expression, all groups showed a significant difference at 3day groups(p<0.05). Whereas, CC group was noted a significant difference between 3day and 7 day group respectively. In NCAM expression, there were significantly increased in all group. In the relationship between CNC group and ENC group, significant difference was detected among 3, 7, 14 day group(p<0.05). The difference between CC group and ENC group were noted in all groups(p<0.05). Conclusion: It is consequently suggested that the effects of the ultrasound irradiation may increase the NCAM immunoreactive neurons and glial cell in the spinal cord after unilateral sciatic nerve crushed injury. Therefore, the increased NCAM immunoreactivity in the spinal cord may reflect the neuronal damage and healing process induced by a ultrasound irradiation after peripheral nerve injury in rat.

  • PDF

Influence of Transcutaneous Electrical Nerve Stimulation and Electroacupuncture on C-fos Expression in Spinal Cord and Functional Recovery After Rat Sciatic Nerve Crush Injury (경피신경전기자극과 전침자극이 흰쥐 좌골신경 압좌손상 후 척수내 c-fos 발현과 기능회복에 미치는 영향)

  • Lee, Hyun-Min
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.187-195
    • /
    • 2009
  • The purpose of this study was to identify the effect of transcutaneous electrical nerve stimulation(TENS) and electroacupuncture(EA) after sciatic nerve crush injury in rats. Subjects were classified TENS group with TENS application, EA group with EA application and Control group which is not applicated electrical stimulation. TENS and EA stimulations were applied post-injury day(PD) 1 to 14 after sciatic nerve injury. This study observed c-fos expression in rat lumbar spinal cord. In addition, the paw withdrawal latency(PWL) and sciatic function index(SFI) were measured. The results were as follows: At PD 1, control group had higher c-fos immunoreactivity than experimental groups. At PD 7 and 14, control group had higher c-fos immunoreactivity than experimental groups. The PWL of experimental groups were significantly lower than control group. The SFI had not significant difference in all groups. But the average of experimental groups were higher than control group. These results suggest that TENS and EA applications increasing sensory and motor nerve recovery while decreasing c-fos immunoreactivity after sciatic nerve crush injury.

Role of MRI in Deciding on a Treatment Plan for Sciatic Nerve Palsy after Reduction of a Hip Dislocation: Case Report (고관절 탈구 정복 후 발견된 좌골 신경 마비의 자기공명영상을 통한 치료방향 결정: 증례 보고)

  • Cho, Junho;Yeo, Woon Hyung;Kim, Ji Wan
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.229-232
    • /
    • 2013
  • Traumatic fracture-dislocations of the hip frequently result from high-energy injury, and hip dislocations are commonly associated with severe concomitant injuries. Sciatic nerve injury often accompanies traumatic fracture-dislocation of the hip, but neurologic examination at the time of injury is difficult in severely traumatized patients with decreased consciousness. We present such a case of multiple traumas with traumatic hip dislocation and sciatic nerve injury after reduction, and we found that magnetic resonance image (MRI) played an important role in developing a management plan.

Effects of YideungJetong-Tang on Peripheral Neuropathy Induced by Taxol and Compression Injury in the Rat Sciatic Nerve (이등제통탕(二藤除痛湯)이 Taxol 처리 및 좌골신경의 압박 손상 후 유발된 랫드의 말초신경병증에 미치는 영향)

  • Jeong, Ho Young;Kim, Chul Jung;Cho, Chung Sik
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.133-146
    • /
    • 2012
  • Background: Most antitumor agents have the side effect of chemotherapy-induced peripheral neuropathy (CIPN). Cancer patients who take antitumor agents suffer from CIPN, but there is no known treatment for it. Unlike the central nerve system, the peripheral nerve can self-repair, and the Schwann cell takes this mechanism. Objectives: In this study, we researched the effect of YideungJetong-Tang (YJT) extract on taxol-induced sciatic nerve damage, through in vitro and in vivo experiments. Also, we studied the effect of YJT extract on neurite recovery and anti-inflammatory effect after compression injury of sciatic nerve in vivo. Methods: Vehicle, taxol and taxol+YJT were respectively applied on sciatic nerve cells of rat in vitro, then the cells were cultured. The sciatic nerve cells and Schwann cells were then observed using Neurofilament 200, Hoechst, ${\beta}$ -tubulin, S-$100{\beta}$, caspase-3 and phospho-Erk1/2. CIPN was induced by taxol into the sciatic nerve of rat in vivo, then YJT extract was taken orally. The axons, Schwann cells and neurites of the DRG sensory nerve were then observed using Neurofilament 200, ${\beta}$-tubulin, Hoechst, S-$100{\beta}$, phospho-Erk1/2 and caspase-3. YJT was taken orally after sciatic nerve compression injury, and the changes in axon of the sciatic nerve, Schwann cells and TNF-${\alpha}$ concentration were observed. Results: The taxol and YJT treated group showed significant effects on Schwann cell recovery, neurite growth and recovery. In vivo, YJT compared with control group showed Schwann cell structural improvement and axons recovering effect after taxol-induced Schwann cell damage. After sciatic nerve compression injury, recovery of distal axon, changes of Schwann cell distribution, and anti-inflammatory response were observed in the YJT. Conclusions: Through this study, we found that after taxol-induced neurite damage of sciatic nerve in vivo and in vitro, YJT had significant effects on sciatic nerve growth and Schwann cell structural improvement. In vivo, YJT improved recovery of distal axons and Schwann cells and had an anti-inflammatory effect.