• 제목/요약/키워드: Schwann cell

검색결과 98건 처리시간 0.027초

The most appropriate antimitotic treatment of Ara-C in Schwann cell-enriched culture from dorsal root ganglia of new born rat

  • Kim, Soung-Min;Jahng, Jeong-Won;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.42-51
    • /
    • 2006
  • Schwann cell, one of important components of peripheral nervous system, interact with neurons to mutually support the growth and replication of embryonal nerves and to maintain the different functions of adult nerves. The Ara-C, known as an antimitotic agent, have been used to have high effectiveness in eliminating fibroblasts during Schwann cell culture period. This enrichment effect is also known to be cummulative with each successive pulse of Ara-C applied and is due to a progressive loss of fibroblasts. But the cytotoxicity by Ara-C is also cummulative and noticeable over the period. To determine the most effective application time and interval of Ara-C in the Schwann cell culture, we observed the Schwann cell purity and density with the Ara-C treatment in plain and three-dimensional culture from dorsal root ganglion of new born rat. By culturing dispersed dorsal root ganglia, we can repeatedly generate homogenous Schwann cells, and cellular morphology and cell count with mean percentages were evaluated in the plain culture dishes and in the immunostainings of S-100 and GFAP in the three-dimensional culture. The Ara-C treated cultures showed a higher Schwann cell percentage (31.0%${\pm}$8.09% in P4 group to 65.5%${\pm}$24.08% in P2 group), compared with that obtained in the abscence of Ara-C (17.6%${\pm}$6.03%) in the plain culture after 2 weeks. And in the three-dimensional culture, S-100 positive cells increased to 56.22%${\pm}$0.67% and GFAP positive cells to 66.46%${\pm}$1.83% in G2 group (p<0.05), higher yield than other groups with Ara-C application. Therefore, we concluded that the Ara-C treatment is effective for the proliferation of Schwann cells contrast to the fibroblasts in vitro culture, and the first application after 24 hours from cell harvesting and subsequent 2 pulse treatment (P2 group in plain culture and G2 group in three-dimensional culture) was more effective than other application protocols.

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • 제3권3호
    • /
    • pp.48-49
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

슈반세포와 뉴런세포을 이용한 수초화의 확인 (Identification of Myelination using Schwann Cells and Neuron Cells)

  • 김지영;사영희;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.989-992
    • /
    • 2014
  • 쥐에서 슈반세포와 뉴런세포를 이용한 수초화가 수행되었다. 슈반세포와 뉴런 세포는 쥐의 배아(임신 16일)의 척수신경절로 부터 각각 분리되어 배양되었다. 배아의 척수신경절이 배양되었고 항 유사분열제가 첨가되었다. 분리 정제된 배아의 슈반세포가 배양되었고 이것은 분리 정제된 배아의 척수신경절 세포에 첨가되었다. 실험실상에서 분리 정제된 수초화 군을 완성할 수 있었다. 뉴로필라멘트 단백질의 항체를 이용하여 수초화의 형성되었음을 확인하였다.

  • PDF

삼차원 배양된 슈반세포 도관을 이용한 말초 신경 재생 (PERIPHERAL NERVE REGENERATION USING A THREE-DIMENSIONALLY CULTURED SCHWANN CELL CONDUIT)

  • 김성민;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권1호
    • /
    • pp.1-16
    • /
    • 2004
  • The use of artificial nerve conduit containing viable Schwann cells is one of the most promising strategies to repair the peripheral nerve injury. To fabricate an effective nerve conduit whose microstructure and internal environment are more favorable in the nerve regeneration than existing ones, a new three-dimensional Schwann cell culture technique using $Matrigel^{(R)}$. and dorsal root ganglion (DRG) was developed. Nerve conduit of three-dimensionally arranged Schwann cells was fabricated using direct seeding of freshly harvested DRG into a $Matrigel^{(R)}$ filled silicone tube (I.D. 1.98 mm, 14 mm length) and in vitro rafting culture for 2 weeks. The nerve regeneration efficacy of three-dimensionally cultured Schwann cell conduit (3D conduit group, n=6) was assessed using SD rat sciatic nerve defect of 10 mm, and compared with that of silicone conduit filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method (2D conduit group, n=6). After 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were examined using image analyzer and electromicroscopic methods. The SFI and ankle stance angle (ASA) in the functional evaluation were $-60.1{\pm}13.9$, $37.9^{\circ}{\pm}5.4^{\circ}$ in 3D conduit group (n=5) and $-87.0{\pm}12.9$, $32.2^{\circ}{\pm}4.8^{\circ}$ in 2D conduit group (n=4), respectively. And the myelinated axon was $44.91%{\pm}0.13%$ in 3D conduit group and $13.05%{\pm}1.95%$ in 2D conduit group to the sham group. In the TEM study, 3D conduit group showed more abundant myelinated nerve fibers with well organized and thickened extracellular collagen than 2D conduit group, and gastrocnemius muscle and biceps femoris tendon in 3D conduit group were less atrophied and showed decreased fibrosis with less fatty infiltration than 2D conduit group. In conclusion, new three-dimensional Schwann cell culture technique was established, and nerve conduit fabricated using this technique showed much improved nerve regeneration capacity than the silicone tube filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method.

랫트에서 수초화를 위한 슈반세포와 뉴런세포의 공동배양 (Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat)

  • 권태동;사영희;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.822-825
    • /
    • 2014
  • 시험내 수초화 시스템을 만들기 위해 쥐에서 슈반세포와 뉴런세포의 공동 배양이 완성되었다. 슈반세포와 뉴런 세포는 각각 쥐의 배아(임신 15일)의 척수신경절로 부터 분리되었다. 이 방법은 4단계로 이루어져 있다. 1단계는 쥐배아의 척수신경절를 부유시키는 단계, 2단계는 유사분열억제제를 첨가하는 단계, 3단계는 척수신경절 세포를 순수 분리하는 단계, 4단계는 척수신경절 세포에 슈반세포를 첨가하는 단계이다. 우리는 단기간 내에 고 순도의 수초화 군을 생성하였으며 이렇게 생성된 수초화 단백질을 수초 기본 단백질(myelination basic protein)의 항체를 이용하여 확인하였다.

  • PDF

구개에 발생한 과립세포종 (ORAL GRANULAR CELL TUMOR OF THE PALATE)

  • 노광섭;홍종락
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권2호
    • /
    • pp.183-187
    • /
    • 2005
  • 본 교실에서는, 경구개에 발생한 과립세포종을 경험하여 문헌 고찰과 함께 면역조직화학적 특성을 확인 하여 기술 하였다. 본 종양세포는 S-100, CD68, NSE 등에 양성 반응을 보여, 과립세포종의 기원이 neural origin, 특히 Schwann's cell이라는 최근의 여러 연구들의 결론에 병행함을 보였다. 증례가 많지 않은 본 종양에 대한 향후 더 많은 증례와 연구가 필요하리라 사료된다.

Development of cell models for high-throughput screening system of Charcot-Marie-Tooth disease type 1

  • Choi, Yu-Ri;Jung, Sung-Chul;Shin, Jinhee;Yoo, So Young;Lee, Ji-Su;Joo, Jaesoon;Lee, Jinho;Hong, Young Bin;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • 제12권1호
    • /
    • pp.25-30
    • /
    • 2015
  • Purpose: Charcot-Marie-Tooth disease (CMT) is a peripheral neuropathy mainly divided into CMT type 1 (CMT1) and CMT2 according to the phenotype and genotype. Although molecular pathologies for each genetic causative have not been revealed in CMT2, the correlation between cell death and accumulation of misfolded proteins in the endoplasmic reticulum (ER) of Schwann cells is well documented in CMT1. Establishment of in vitro models of ER stress-mediated Schwann cell death might be useful in developing drug-screening systems for the treatment of CMT1. Materials and Methods: To develop high-throughput screening (HTS) systems for CMT1, we generated cell models using transient expression of mutant proteins and chemical induction. Results: Overexpression of wild type and mutant peripheral myelin protein 22 (PMP22) induced ER stress. Similar results were obtained from mutant myelin protein zero (MPZ) proteins. Protein localization revealed that expressed mutant PMP22 and MPZ proteins accumulated in the ER of Schwann cells. Overexpression of wild type and L16P mutant PMP22 also reduced cell viability, implying protein accumulation-mediated ER stress causes cell death. To develop more stable screening systems, we mimicked the ER stress-mediated cell death in Schwann cells using ER stress inducing chemicals. Thapsigargin treatment caused cell death via ER stress in a dose dependent manner, which was measured by expression of ER stress markers. Conclusion: We have developed genetically and chemically induced ER stress models using Schwann cells. Application of these models to HTS systems might facilitate the elucidation of molecular pathology and development of therapeutic options for CMT1.

뉴런세포와 슈반세포의 공동배양에 의한 수초화와 바이러스 감염에 의한 탈수초화 (Myelination by co-culture of neurons and schwann cells and demyelination by virus infection)

  • 사영희;권태동;김지영;김현주;이배환;홍성갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.448-451
    • /
    • 2018
  • 본 연구는 뉴런 세포와 슈반 세포의 공동 배양에 의한 수초화 발생 과정과 herpes simplex virus-1 감염에 의한 탈수초화 발생과정을 전자 현미경과 분자생물학적 분석에 의하여 확인하고자 하였다. 쥐의 배아로부터 후근신경절(dorsal root ganglion, DRG)을 분리하여 슈반(Schwann) 세포와 뉴런 세포(neuronal cell)를 in vitro에서 각각 배양하였다. 유사 분열 억제인자로 처리한 뉴런세포와 정제된 슈반세포를 함께 공동 배양을 하여 수초화를 발생시켰다. 이렇게 수초화된 공동 배양 세포에 herpes simplex virus-1를 감염시켜 탈수초화를 진행시켰다. 수초 형성의 존재를 의미하는 myelin protein zero(MPZ) 항체를 사용하고 전자 현미경을 이용하여 수초 발생 및 탈수초화 과정을 관찰하였다.

  • PDF

BDNF 유전자 이입 슈반세포와 PGA 도관을 이용한 백서 좌골신경 재생에 관한 연구 (PERIPHERAL NERVE REGENERATION USING POLYGLYCOLIC ACID CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE TRANSFECTED SCHWANN CELLS IN RAT SCIATIC NERVE)

  • 최원재;안강민;고은봉;신영민;김윤태;황순정;김남열;김명진;조승우;김병수;김윤희;김성민;이종호
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권6호
    • /
    • pp.465-473
    • /
    • 2004
  • Purpose : The essential triad for nerve regeneration is nerve conduit, supporting cell and neurotrophic factor. In order to improve the peripheral nerve regeneration, we used polyglycolic acid(PGA) tube and brain-derived neurotrophic factor(BDNF) gene transfected Schwann cells in sciatic nerve defects of SD rat. Materials and methods : Nerve conduits were made with PGA sheet and outer surface was coated with poly(lactic-co-glycolic acid) for mechanical strength and control the resorption rate. The diameter of conduit was 1.8mm and the length was 17mm Schwann cells were harvested from dorsal root ganglion(DRG) of SD rat aged 1 day. Schwann cells were cultured on the PGA sheet to test the biocompatibility adhesion of Schwann cell. Human BDNF gene was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into E1 deleted region of adenovirus shuttle vector, pAACCMVpARS. BDNF-adenovirus was multiplied in 293 cells and purified. The BDNF-Adenovirus was then infected to the cultured Schwann cells. Left sciatic nerve of SD rat (250g weighing) was exposed and 14mm defects were made. After bridging the defect with PGA conduit, culture medium(MEM), Schwann cells or BDNF-Adenovirus infected Schwann cells were injected into the lumen of conduit, respectively. 12 weeks after operation, gait analysis for sciatic function index, electrophysiology and histomorphometry was performed. Results : Cultured Schwann cells were well adhered to PGA sheet. Sciatic index of BDNF transfected group was $-53.66{\pm}13.43$ which was the best among three groups. The threshold of compound action potential was between 800 to $1000{\mu}A$ in experimental groups which is about 10 times higher than normal sciatic nerve. Conduction velocity and peak voltage of action potential of BDNF group was the highest among experimental groups. The myelin thickness and axonal density of BDNF group was significantly greater than the other groups. Conclusion : BDNF gene transfected Schwann cells could regenerate the sciatic nerve gap(14mm) of rat successfully.