• Title/Summary/Keyword: School-Based Enterprises

Search Result 269, Processing Time 0.026 seconds

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

The Non-Appropriation Principle and Corpus Juris Spatialis (비전유원칙과 우주법(Corpus Juris Spatialis))

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.181-202
    • /
    • 2020
  • The Non-Appropriation Principle was stipulated in the OST and the MA. However the MA, creating CHM in international law for the first time, attempted to further limit the prohibitions to include ownership of resources extracted from celestial bodies, its rejection by the U.S. and most of the international spacefaring community prevented it from serving as a binding international treaty. Individuals or private enterprises intending to perform space exploitation must receive approval from the nation and may not appropriate outer space or celestial bodies. In the course of this space activity, each party will be liable. Articles 6 and 7 of the OST and the Liability Convention of 1972 deal with matters concerning those problems. The CSLCA of 2015 and Luxembourg Space Resources Law of 2017 allows States to provide commercial exploration and use of space resources to their own nationals and to companies operated by other countries within their territory. These laws do not violate Article 2 of the OST. In the case of the CSLCA of 2015, the law clearly states that it cannot claim ownership, sovereignty or jurisdiction over certain celestial bodies. Even if scholars claim that the U.S. CSLCA and Luxembourg Space Resources Law violate the non-appropriation principle of the OST, they cannot prevent these two countries from extracting the space resources on "the first come, first served" basis. The legal status of outer space including the moon and other celestial bodies is res extra commercium, like the high seas, where the fishing vessels from each country catch and sell fish without occupying the sea. Major space-faring nations must push for the adoption of an international regulatory committee which will oversee applications and issue permits based on a set of robust, modern, and forward-thinking ideals that are best equipped to govern and protect outer space as individuals, businesses, and nations compete to commercialize space through mining and the extraction of space-based resources. The new Corpus Juris Spatialis on the development of space resources, whether it is a treaty or a soft law such as recommendation and declaration, in the case of the Moon and Mars, will cover a certain amount of area to develop, and the development period by the states should be specified.

A Study on the Perception of Preferences of Corporate Recruitment for Start-up Experiencer: Focusing on the Comparison between the Job Seekers with Start-up Experiences and the General Job Seekers (창업경험자에 대한 기업채용 선호도의 인식조사: 창업경험자와 일반구직자 비교를 중심으로)

  • Hue, Je-In
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.1
    • /
    • pp.209-224
    • /
    • 2020
  • This study started from the question of whether the preference of corporate recruitment can be achieved without any difference between the start-up experiencer and the general job seekers. Therefore, the purpose of the study is to identify the factors related to start-ups that affect the preference of job seekers for companies, and to analyze the differences in the factors related to start-ups between general job seekers and job seekers with start-up experience. Third, it is to see the difference in the preference for employment between job seekers with start-up experiences and general job seekers. The independent variables of the research model were entrepreneurship, motivation for start-up (job search), and characteristics of the job seekers (founder). The dependent variables were job preference, and the moderating variables were presented as job seekers' classification (job seekers with start-up experience vs. general job seekers). The subjects of the study were personnel managers of 100 companies with more than 5 years of establishment and 100 new companies with less than 5 years of establishment. The questionnaire was distributed in two types, and 189 respondents, including 101 job seekers with start-up experiences and 88 general job seekers, were finally used for analysis. The results of the study were as follows. First, as a result of multiple regression analysis on both experienced start-up experiencers and general job seekers, only entrepreneurship had an effect on preference for recruitment. Second, the moderating effect of job seekers' classification was found only in the relationship between motivation for start-up and preference for employment. Third, the result of multiple regression analysis based on the start-up experiencers showed that the relationship between the motivation for start-up, the preference for recruitment, the characteristics of founders and the preference for recruitment was statistically significant. On the other hand, the characteristics of the founder and the preference for employment were rejected. Fourth, the results of the study based on general job seekers showed that the motivation for job search decreased the preference for employment. The study did not provide the results of differences in recognition between different industries, traditional enterprises and venture businesses due to the limitation of small examples. There is no clear definition of start-up experiencers either. However, it is meaningful to suggest the implications of what preparations should be made when the start-up experiencers close their start-ups and turn their career into employment and to help them to accurately recognize the importance of entrepreneurship. It also provides the preference of the general job seekers for the company, the preparation for successful employment, and the implications for the direction of the future start-up revitalization.

An Empirical Study on the Influencing Factors of Perceived Job Performance in the Context of Enterprise Mobile Applications (업무성과에 영향을 주는 업무용 모바일 어플리케이션의 주요 요인에 관한 연구)

  • Chung, Sunghun;Kim, Kimin
    • Asia pacific journal of information systems
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2014
  • The ubiquitous accessibility of information through mobile devices has led to an increased mobility of workers from their fixed workplaces. Market researchers estimate that by 2016, 350 million workers will be using their smartphones for business purposes, and the use of smartphones will offer new business benefits. Enterprises are now adopting mobile technologies for numerous applications to increase their operational efficiency, improve their responsiveness and competitiveness, and cultivate their innovativeness. For these reasons, various organizational aspects concerning "mobile work" have received a great deal of recent attention. Moreover, many CIOs plan to allocate a considerable amount of their budgets mobile work environments. In particular, with the consumerization of information technology, enterprise mobile applications (EMA) have played a significant role in the explosive growth of mobile computing in the workplace, and even in improving sales for firms in this field. EMA can be defined as mobile technologies and role-based applications, as companies design them for specific roles and functions in organizations. Technically, EMA can be defined as business enterprise systems, including critical business functions that enable users to access enterprise systems via wireless mobile devices, such as smartphones or tablets. Specifically, EMA enables employees to have greater access to real-time information, and provides them with simple features and functionalities that are easy for them to complete specific tasks. While the impact of EMA on organizational workers' productivity has been given considerable attention in various literatures, relatively little research effort has been made to examine how EMA actually lead to users' job performance. In particular, we have a limited understanding of what the key antecedents are of such an EMA usage outcome. In this paper, we focus on employees' perceived job performance as the outcome of EMA use, which indicates the successful role of EMA with regard to employees' tasks. Thus, to develop a deeper understanding of the relationship among EMA, its environment, and employees' perceived job performance, we develop a comprehensive model that considers the perceived-fit between EMA and employees' tasks, satisfaction on EMA, and the organizational environment. With this model, we try to examine EMA to explain how job performance through EMA is revealed from both the task-technology fit for EMA and satisfaction on EMA, while also considering the antecedent factors for these constructs. The objectives of this study are to address the following research questions: (1) How can employees successfully manage EMA in order to enhance their perceived job performance? (2) What internal and/or external factors are important antecedents in increasing EMA users' satisfaction on MES and task-technology fit for EMA? (3) What are the impacts of organizational (e.g. organizational agility), and task-related antecedents (e.g., task mobility) on task-technology fit for EMA? (4) What are the impacts of internal (e.g., self-efficacy) and external antecedents (e.g., system reputation) for the habitual use of EMA? Based on a survey from 254 actual employees who use EMA in their workplace across industries, our results indicate that task-technology fit for EMA and satisfaction on EMA are positively associated with job performance. We also identify task mobility, organizational agility, and system accessibility that are found to be positively associated with task-technology fit for EMA. Further, we find that external factor, such as the reputation of EMA, and internal factor, such as self-efficacy for EMA that are found to be positively associated with the satisfaction of EMA. The present findings enable researchers and practitioners to understand the role of EMA, which facilitates organizational workers' efficient work processes, as well as the importance of task-technology fit for EMA. Our model provides a new set of antecedents and consequence variables for a TAM involving mobile applications. The research model also provides empirical evidence that EMA are important mobile services that positively influence individuals' performance. Our findings suggest that perceived organizational agility and task mobility do have a significant influence on task-technology fit for EMA usage through positive beliefs about EMA, that self-efficacy and system reputation can also influence individuals' satisfaction on EMA, and that these factors are important contingent factors for the impact of system satisfaction and perceived job performance. Our findings can help managers gauge the impact of EMA in terms of its contribution to job performance. Our results provide an explanation as to why many firms have recently adopted EMA for efficient business processes and productivity support. Our findings additionally suggest that the cognitive fit between task and technology can be an important requirement for the productivity support of EMA. Further, our study findings can help managers in formulating their strategies and building organizational culture that can affect employees perceived job performance. Managers, thus, can tailor their dependence on EMA as high or low, depending on their task's characteristics, to maximize the job performance in the workplace. Overall, this study strengthens our knowledge regarding the impact of mobile applications in organizational contexts, technology acceptance and the role of task characteristics. To conclude, we hope that our research inspires future studies exploring digital productivity in the workplace and/or taking the role of EMA into account for employee job performance.

The Development and Validation of a Core Competency Scale for Startup Talent : Focusing on ICT Sector Employees (스타트업 핵심인재 역량 척도 개발 및 타당화 : 정보통신기술(ICT)분야 종사자를 대상으로)

  • Han, Chae-yeon;Ha, Gyu-young
    • Journal of Venture Innovation
    • /
    • v.7 no.3
    • /
    • pp.183-228
    • /
    • 2024
  • This study aimed to develop a competency evaluation scale tailored to the specific needs of key talent in the ICT startup sector. Existing competency assessment tools are mostly designed for environments in large corporations or traditional small and medium-sized enterprises, failing to adequately reflect the dynamic requirements of rapidly evolving startups. For startups, where a small number of individuals directly impact company success, key talent is a critical asset. Accordingly, this study sought to create a scale that measures the competencies suited to the challenges and opportunities faced by startups, helping domestic startups establish more effective talent management strategies. The research initially selected 71 items through a literature review and in-depth interviews. Based on expert feedback that emphasized the need for more precise and clear descriptions, the item descriptions were revised, and a total of 65 items were developed through four rounds of content validation. Following preliminary and main surveys, a final set of 58 items was developed. The main survey conducted further factor analysis based on the three broad competency factors?knowledge, skills, and attitude?identified in the preliminary survey. As a result, 10 latent factors emerged: 6 items for task comprehension, 6 items for practical experience (tacit knowledge), 6 items for collaboration, 9 items for management and problem-solving, 9 items for practical skills, 4 items for self-direction, 5 items for goal orientation, 5 items for adaptability, 5 items for relationship orientation, and 3 items for organizational loyalty. The developed scale comprehensively covers the multifaceted nature of competencies, allowing for a thorough evaluation of essential skills such as technical ability, teamwork, innovation, and leadership, which are critical for startups. Therefore, the scale provides a tool that helps startup managers objectively and accurately assess candidates' competencies. It also supports the growth of employees within startups, maximizing the overall organizational performance. By utilizing this tool, startups can build a strong internal talent pool and continuously enhance employees' competencies, thereby strengthening organizational competitiveness. In conclusion, the competency evaluation scale developed in this study is a customized tool that aligns with the characteristics of startups and plays a crucial role in securing sustainable competitiveness in rapidly changing market environments. Additionally, it offers practical guidance to support the successful growth of domestic startups and help them maintain their competitive edge in the market, contributing to the development of the startup ecosystem and the growth of the national economy.

The Prediction of Export Credit Guarantee Accident using Machine Learning (기계학습을 이용한 수출신용보증 사고예측)

  • Cho, Jaeyoung;Joo, Jihwan;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.83-102
    • /
    • 2021
  • The government recently announced various policies for developing big-data and artificial intelligence fields to provide a great opportunity to the public with respect to disclosure of high-quality data within public institutions. KSURE(Korea Trade Insurance Corporation) is a major public institution for financial policy in Korea, and thus the company is strongly committed to backing export companies with various systems. Nevertheless, there are still fewer cases of realized business model based on big-data analyses. In this situation, this paper aims to develop a new business model which can be applied to an ex-ante prediction for the likelihood of the insurance accident of credit guarantee. We utilize internal data from KSURE which supports export companies in Korea and apply machine learning models. Then, we conduct performance comparison among the predictive models including Logistic Regression, Random Forest, XGBoost, LightGBM, and DNN(Deep Neural Network). For decades, many researchers have tried to find better models which can help to predict bankruptcy since the ex-ante prediction is crucial for corporate managers, investors, creditors, and other stakeholders. The development of the prediction for financial distress or bankruptcy was originated from Smith(1930), Fitzpatrick(1932), or Merwin(1942). One of the most famous models is the Altman's Z-score model(Altman, 1968) which was based on the multiple discriminant analysis. This model is widely used in both research and practice by this time. The author suggests the score model that utilizes five key financial ratios to predict the probability of bankruptcy in the next two years. Ohlson(1980) introduces logit model to complement some limitations of previous models. Furthermore, Elmer and Borowski(1988) develop and examine a rule-based, automated system which conducts the financial analysis of savings and loans. Since the 1980s, researchers in Korea have started to examine analyses on the prediction of financial distress or bankruptcy. Kim(1987) analyzes financial ratios and develops the prediction model. Also, Han et al.(1995, 1996, 1997, 2003, 2005, 2006) construct the prediction model using various techniques including artificial neural network. Yang(1996) introduces multiple discriminant analysis and logit model. Besides, Kim and Kim(2001) utilize artificial neural network techniques for ex-ante prediction of insolvent enterprises. After that, many scholars have been trying to predict financial distress or bankruptcy more precisely based on diverse models such as Random Forest or SVM. One major distinction of our research from the previous research is that we focus on examining the predicted probability of default for each sample case, not only on investigating the classification accuracy of each model for the entire sample. Most predictive models in this paper show that the level of the accuracy of classification is about 70% based on the entire sample. To be specific, LightGBM model shows the highest accuracy of 71.1% and Logit model indicates the lowest accuracy of 69%. However, we confirm that there are open to multiple interpretations. In the context of the business, we have to put more emphasis on efforts to minimize type 2 error which causes more harmful operating losses for the guaranty company. Thus, we also compare the classification accuracy by splitting predicted probability of the default into ten equal intervals. When we examine the classification accuracy for each interval, Logit model has the highest accuracy of 100% for 0~10% of the predicted probability of the default, however, Logit model has a relatively lower accuracy of 61.5% for 90~100% of the predicted probability of the default. On the other hand, Random Forest, XGBoost, LightGBM, and DNN indicate more desirable results since they indicate a higher level of accuracy for both 0~10% and 90~100% of the predicted probability of the default but have a lower level of accuracy around 50% of the predicted probability of the default. When it comes to the distribution of samples for each predicted probability of the default, both LightGBM and XGBoost models have a relatively large number of samples for both 0~10% and 90~100% of the predicted probability of the default. Although Random Forest model has an advantage with regard to the perspective of classification accuracy with small number of cases, LightGBM or XGBoost could become a more desirable model since they classify large number of cases into the two extreme intervals of the predicted probability of the default, even allowing for their relatively low classification accuracy. Considering the importance of type 2 error and total prediction accuracy, XGBoost and DNN show superior performance. Next, Random Forest and LightGBM show good results, but logistic regression shows the worst performance. However, each predictive model has a comparative advantage in terms of various evaluation standards. For instance, Random Forest model shows almost 100% accuracy for samples which are expected to have a high level of the probability of default. Collectively, we can construct more comprehensive ensemble models which contain multiple classification machine learning models and conduct majority voting for maximizing its overall performance.

Cooperation Strategy in the Business Ecosystem and Its Healthiness: Case of Win - Win Growth of Samsung Electronics and Partnering Companies (기업생태계 상생전략과 기업건강성효과: 삼성전자와 협력업체의 상생경영사례를 중심으로)

  • Sung, Changyong;Kim, Ki-Chan;In, Sungyong
    • The Journal of Small Business Innovation
    • /
    • v.19 no.4
    • /
    • pp.19-39
    • /
    • 2016
  • With increasing adoption of smart products and complexity, companies have shifted their strategies from stand alone and competitive strategies to business ecosystem oriented and cooperative strategies. The win-win growth of business refers to corporate efforts undertaken by companies to pursue the healthiness of business between conglomerates and partnering companies such as suppliers for mutual prosperity and a long-term corporate soundness based on their business ecosystem and cooperative strategies. This study is designed to validate a theoretical proposition that the win-win growth strategy of Samsung Electronics and cooperative efforts among companies can create a healthy business ecosystem, based on results of case studies and surveys. In this study, a level of global market access of small and mid-sized companies is adopted as the key achievement index. The foreign market entry is considered as one of vulnerabilities in the ecosystem of small and mid-sized enterprises (SMEs). For SMEs, the global market access based on the research and development (R&D) has become the critical component in the process of transforming them into global small giants. The results of case studies and surveys are analyzed mainly based on a model of a virtuous cycle of Creativity, Opportunity, Productivity, and Proactivity (the COPP model) that features the characteristics of the healthiness of a business ecosystem. In the COPP model, a virtuous circle of profits made by the first three factors and Proactivity, which is the manifestation of entrepreneurship that proactively invests and reacts to the changing business environment of the future, enhances the healthiness of a given business ecosystem. With the application of the COPP model, this study finds major achievements of the win-win growth of Samsung Electronics as follows. First, Opportunity plays a role as a parameter in the relations of Creativity, Productivity, and creating profits. Namely, as companies export more (with more Opportunity), they are more likely to link their R&D efforts to Productivity and profitability. However, companies that do not export tend to fail to link their R&D investment to profitability. Second, this study finds that companies with huge investment on R&D for the future, which is the result of Proactivity, tend to hold a large number of patents (Creativity). And companies with significant numbers of patents tend to be large exporters as well (Opportunity), and companies with a large amount of exports tend to record high profitability (Productivity and profitability), and thus forms the virtuous cycle of the COPP model. In addition, to access global markets for sustainable growth, SMEs need to build and strengthen their competitiveness. This study concludes that companies with a high level of proactivity to invest for the future can create a virtuous circle of Creativity, Opportunity, Productivity, and Proactivity, thereby providing a strategic implication that SMEs should invest time and resources in forming such a virtuous cycle which is a sure way for the SMEs to grow into global small giants.

  • PDF

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

Study on the effect of small and medium-sized businesses being selected as suitable business types, on the franchise industry (중소기업적합업종선정이 프랜차이즈산업에 미치는 영향에 관한 연구)

  • Kang, Chang-Dong;Shin, Geon-Chel;Jang, Jae Nam
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.1-23
    • /
    • 2012
  • The conflict between major corporations and small and medium-sized businesses is being aggravated, the trickle down effect is not working properly, and, as the controversy surrounding the effectiveness of the business limiting system continues to swirl, the plan proposed to protect the business domain of small and medium-sized businesses, resolve polarization between these businesses and large corporations, and protect small family run stores is the suitable business type designation system for small and medium-sized businesses. The current status of carrying out this system of selecting suitable business types among small and medium-sized businesses involves receiving applications for 234 items among the suitable business types and items from small and medium-sized businesses in manufacturing, and then selecting the items of the consultative group by analyzing and investigating the actual conditions. Suitable business type designation in the service industry will involve designation with priority on business types that are experiencing social conflict. Three major classifications of the service industry, related to the livelihood of small and medium-sized businesses, will be first designated, and subsequently this will be expanded sequentially. However, there is the concern that when designated as a suitable business type or item, this will hinder the growth motive for small to medium-sized businesses, and designation all cause decrease in consumer welfare. Also it is highly likely that it will operate as a prior regulation, cause side-effects by limiting competition systematically, and also be in violation against the main regulations of the FTA system. Moreover, it is pointed out that the system does not sufficiently reflect reverse discrimination factor against large corporations. Because conflict between small to medium sized businesses and large corporations results from the expansion of corporations to the service industry, which is unrelated to their key industry, it is necessary to introduce an advanced contract method like a master franchise or local franchise system and to develop local small to medium sized businesses through a franchise system to protect these businesses and dealers. However, this method may have an effect that contributes to stronger competitiveness of small to medium sized franchise businesses by advancing their competitiveness and operational methods a step further, but also has many negative aspects. First, as revealed by the Ministry of Knowledge Economy, the franchise industry is contributing to the strengthening of competitiveness through the economy of scale by organizing existing individual proprietors and increasing the success rate of new businesses. It is also revealed to be a response measure by the government to stabilize the economy of ordinary people and is emphasized as a 'useful way' to revitalize the service industry and improve the competitiveness of individual proprietors, and has been involved in contributions to creating jobs and expanding the domestic market by providing various services to consumers. From this viewpoint, franchises fit the purpose of the suitable business type system and is not something that is against it. Second, designation as a suitable business type may decrease investment for overseas expansion, R&D, and food safety, as well negatively affect the expansion of overseas corporations that have entered the domestic market, due to the contraction and low morale of large domestic franchise corporations that have competitiveness internationally. Also because domestic franchise businesses are hard pressed to secure competitiveness with multinational overseas franchise corporations that are operating in Korea, the system may cause difficulty for domestic franchise businesses in securing international competitiveness and also may result in reverse discrimination against these overseas franchise corporations. Third, the designation of suitable business type and item can limit the opportunity of selection for consumers who have up to now used those products and can cause a negative effect that reduces consumer welfare. Also, because there is the possibility that the range of consumer selection may be reduced when a few small to medium size businesses monopolize the market, by causing reverse discrimination between these businesses, the role of determining the utility of products must be left ot the consumer not the government. Lastly, it is desirable that this is carried out with the supplementation of deficient parts in the future, because fair trade is already secured with the enforcement of the franchise trade law and the best trade standard of the Fair Trade Commission. Overlapping regulations by the suitable business type designation is an excessive restriction in the franchise industry. Now, it is necessary to establish in the domestic franchise industry an environment where a global franchise corporation, which spreads Korean culture around the world, is capable of growing, and the active support by the government is needed. Therefore, systems that do not consider the process or background of the growth of franchise businesses and harm these businesses for the sole reason of them being large corporations must be removed. The inhibition of growth to franchise enterprises may decrease the sales of franchise stores, in some cases even bankrupt them, as well as cause other problems. Therefore the suitable business type system should not hinder large corporations, and as both small dealers and small to medium size businesses both aim at improving competitiveness and combined growth, large corporations, small dealers and small to medium sized businesses, based on their mutual cooperation, should not include franchise corporations that continue business relations with them in this system.

  • PDF