• Title/Summary/Keyword: School ground

Search Result 2,415, Processing Time 0.025 seconds

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

  • Kim, Kiseok;Oh, Juyoung;Lee, Hyobum;Kim, Dongku;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.823-831
    • /
    • 2018
  • The most important issue during shield TBM tunneling in soft ground formations is to appropriately control ground surface settlement. Among various operational conditions in shield TBM tunneling, the face pressure and backfill pressure should be the most important and immediate measure to restrain surface settlement during excavation. In this paper, a 3-D hydro-mechanical coupled FE model is developed to numerically simulate the entire process of shield TBM tunneling, which is verified by comparing with real field measurements of ground surface settlement. The effect of permeability and stiffness of ground formations on tunneling-induced surface settlement was discussed in the parametric study. An increase in the face pressure and backfill pressure does not always lead to a decrease in surface settlement, but there are the critical face pressure and backfill pressure. In addition, considering the relatively low permeability of ground formations, the surface settlement consists of two parts, i.e., immediate settlement and consolidation settlement, which shows a distinct settlement behavior to each other.

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

Effect of non-stationary spatially varying ground motions on the seismic responses of multi-support structures

  • Xu, Zhaoheng;Huang, Tian-Li;Bi, Kaiming
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.325-341
    • /
    • 2022
  • Previous major earthquakes indicated that the earthquake induced ground motions are typical non-stationary processes, which are non-stationary in both amplification and frequency. For the convenience of aseismic design and analysis, it usually assumes that the ground motions at structural supports are stationary processes. The development of time-frequency analysis technique makes it possible to evaluate the non-stationary responses of engineering structures subjected to non-stationary inputs, which is more general and realistic than the analysis method commonly used in engineering. In this paper, the wavelet-based stochastic vibration analysis methodology is adopted to calculate the non-stationary responses of multi-support structures. For comparison, the stationary response based on the standard random vibration method is also investigated. A frame structure and a two-span bridge are analyzed. The effects of non-stationary spatial ground motion and local site conditions are considered, and the influence of structural property on the structural responses are also considered. The analytical results demonstrate that the non-stationary spatial ground motions have significant influence on the response of multi-support structures.

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

A study for the extraction of DGS 4-port equivalent circuit and it's parameters (DGS 구조의 4-port 등가회로 및 파라미터에 대한 추출 방법에 대한 연구)

  • Son, Chang-Sin;Jeong, Myung-Sub;Choi, Wan-Seoung;Park, Jun-Seok;Lim, Jae-Bong;Choi, Hong-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2043-2045
    • /
    • 2004
  • This thesis complemented the weak points that the existing theses did not represented a phase characteristic as the equivalent circuit by applying 4-port simulation to DGS (Defected Ground Structure) characteristic and an equivalent circuit, which are the transmission line structure that has the defect made in the ground surface. We used a distribute device and a lumped device, obtained the equivalent circuit by applying the structure of balun to a discontinuous part. An indicated DGS (Defected Ground structure) is a dumbbells-shaped single defect, we indicated satisfying a magnitude and phase characteristics by applying this equivalent circuit.

  • PDF

Application of Ground Penetrating Radar for Estimation of Loose Layer (지반 이완구간 추정을 위한 지하투과레이더의 적용)

  • Hong, Won-Taek;Kang, Seonghun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.41-48
    • /
    • 2015
  • An investigation of a void and a loose layer of the ground is essential in order to prevent the losses of life and properties caused by subsidence and sinkage of the ground. Recently, studies on the ground penetrating radar survey have been actively conducted in order to estimate the void and the loose layer of the ground. However, an error can be committed by contrarily predicting a dense ground and a loose layer because the ground penetrating radar estimates an interface depth between geo-materials that have different electrical impedances. In this study, a loose ground depth is estimated using the characteristics of the reflected electromagnetic wave obtained from the ground penetrating radar survey. To gather the signals according to the loose ground depths, the ground penetrating radar survey is conducted on a field which underwent a huge ground settlement. In addition, the dynamic cone penetration test is performed to verify the result of the loose ground depth estimation from the ground penetrating radar survey. From the analysis of the reflection characteristics of the electromagnetic wave, a phase of an electromagnetic wave reflected from a denser soil layer is found to be identical with that of the first measured signal. On the other hand, a phase of an electromagnetic wave reflected from the loose soil layer is found to be opposed to that of the first detected signal. The comparison between the dynamic cone penetration index and electromagnetic signals by the ground penetrating radar shows that the estimated depth of the loose or dense layer is perfectly matched with a high reliability. The ground penetrating radar survey and the signal analysis performed in this study can be used not only for the survey of interface depth between the discontinuity layers but also for the estimation of the loose layer.

Analysis of the Ground Impedance of Ground Grids Combined with the Carbon Ground Electrodes (탄소접지극이 병설된 접지그리드의 접지임피던스의 해석)

  • Lee, Bok-Hee;Um, Sang-Hyun;Kim, You-Ha;Lee, Kang-Soo;Jeon, Byung-Wook;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • This paper deals with the frequency-dependent ground impedance of ground grids combined with the carbon ground electrodes. Ground grids are generally valid for multipurpose grounding systems as well as lightning protection systems. The carbon ground electrodes may be supplementarily used to reduce the high frequency ground impedance and to improve the transient response to surge currents. The frequency-dependent ground impedances of ground grids combined with or without the carbon ground electrodes were measured and their simulations with due regard to frequency-dependent soil resistivity were implemented by using EMTP program and Matlab modeling. As a consequence, the ground impedance of ground grids combined with the carbon ground electrodes is significantly reduced when the test current is injected at the terminal of the carbon ground electrode. The measured and simulated data for the test ground grids fairly agree with each other. It was found that the proposed method of simulating the frequency-dependent ground impedance is distinguished. The simulation techniques of predicting accurately the ground impedances without actual measurements can be used in the design of grounding systems based on ground grids and the carbon ground electrodes.

A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground (지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.

Antioxidant System-Inducing Effects of Jeju Ground Water in C57BL/6 Mice against Gamma-ray Radiation

  • Kim, A-Reum-Da-Seul;Jee, Young-Heun;You, Ho-Jin;Hyun, Jin-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, we reported that Jeju ground water contains vanadium components and exerts antioxidant effects in vitro and in vivo via the scavenging of reactive oxygen species and enhancement of antioxidant enzyme activities. In the present study, the antioxidant actions of Jeju ground water were compared with those of tap water against gamma-ray radiation in mice. C57BL/6 mice were irradiated with gamma-ray at a dose rate of 2 Gy. The mice were then given tap water or Jeju ground water for 90 days. Jeju ground water compared with tap water enhanced the activities and levels of superoxide dismutase, catalase, and glutathione peroxidase in irradiated liver tissues. Jeju ground water also enhanced the levels of intracellular reduced glutathione, which is vital for normal liver function and repair. These results suggest that vanadium-containing Jeju ground water can safeguard against the harmful actions of gamma-ray radiation through the support of hepatic antioxidant processes.