• 제목/요약/키워드: School ground

검색결과 2,420건 처리시간 0.031초

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

공동주택 단지 내 지반 특성 및 지반 구성에 따른 열적 특성에 관한 연구 (The Effect of the Ground Composition on Thermal Environment in Multi -residential Building Block)

  • 황효근;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.88-97
    • /
    • 2009
  • In these days, it attracts our attention to create a green outdoor environment around the building block in urban area. Green space and permeable ground covering are increased by laws and regulations. According to these trends, variety researches for improving outdoor environment are accomplished at this moment. However, the problems for outdoor environment such as heat island effect and air contaminant in urban area are still reported. The purpose of this study is to examine the variables to affect the formation of outdoor thermal environment by quantitative analysis. As a initial study, in this paper, the effect of ground composition on changes of surface temperature and heat flux in multi-residential building were analyzed by field measurement and numerical simulation. Through field measurement, the surface temperature and heat flux of artificial ground in multi-residential building in Suwon city were measured. The result showed that the surface temperature was decreased by about $20^{\circ}C$ with afforestation of artificial ground compared with those of concrete covering. Moreover, the inner temperature of artificial ground was changed as same behaviors of outdoor temperature changes to depths of 20cm. In simulation, the effect of soil types and depth of artificial ground on the changes of the surface temperature and heat flux were analyzed. As results, the natural soil ground was more effective against lowering the surface temperature than any other cases in the analyzed cases.

비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구 (Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity)

  • 유남재;한중근;이강일
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.97-107
    • /
    • 2017
  • 최근 도심지에서 지반함몰이 많이 발생하고 있으며 복구작업시 현장 주변 통제로 매우 복잡하고 불편하고 복구대책 공법으로 그라우팅 및 흙메우기 공법이 적용되고 있지만 지반 내 지하수위의 존재 및 공동상태에 따라 재료분리 현상이 발생하거나 많은 양의 복구재료가 요구되는 경우가 많고 지하수의 흐름에 따라 지반 내에서 유실되는 경우도 발생하고 있어 본 연구는 도심지에서 지반함몰이 발생하고 신속하게 복구하는 것을 목표로 지반공동의 긴급보강을 위해 비개착식 공법에 적용할 파우치형 충전재를 개발하는 것으로 지하수의 온도에 따라 충전재의 압축강도 및 팽창비가 다른 것과, 알루미나 파우더의 혼합을 통해 압축강도와 팽창률을 조절할 수 있음을 확인했다.

심부지열 용 동축 열교환기 성능예측을 위한 열전달 실험 및 해석 (Heat Transfer Experiment and Analysis to Predict the Efficiency of Heat Exchanger for Deep Geothermal System)

  • 정국진;정윤성;박준수;이동현
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The Heat exchanger for deep geothermal system is very important to enhance the efficiency of the system. The co-axial heat exchanger is used due to the limitation of digging space. The heat transfer on the external surface of outer pipe should be high to receive a large amount of heat from the ground. However, the inner pipe should be insulated to reduce the heat loss and increase the temperature of discharge water. This study made experiment apparatus to describe the co-axial heat exchanger and measure the heat transfer coefficients on the internal and external surface. And the pin-fin was designed and fixed on the internal surface to increase the efficiency of heat exchanger. Finally, we calculated the temperature of discharge water using the heat transfer circuit of co-axial heat exchanger and heat transfer coefficient which from experimental results. The water temperature was reached the ground temperature at -500 m and following the ground temperature. When the water return to the ground surface, the water temperature was decreased due to heat loss. As the pin-fin case, the heat transfer coefficient on the internal surface was decreased by 30% and it mean that the pin-fin help to insulate the inner pipe. However, the discharge water temperature did not change although pin-fin fixed on the inner pipe.

지반 응답 해석 Round Robin Test의 입력 지진파 및 물성에 관한 고찰 (Investigation into the Input Earthquake Motions and Properties for Round Robin Test on Ground Response Analysis)

  • 선창국;한진태;최정인;김기석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.266-292
    • /
    • 2007
  • Round Robin Test (RRT) on ground response analyses was conducted for three sites in Korea based on several site investigation data, which include borehole logs with the N values from standard penetration test (SPT) for all three sites and additionally cone tip resistance profiles for two sites. Three input earthquake motions together with the site investigation data were provided for the RRT. A total of 12 teams participating in this RRT presented the results of ground response analyses using equivalent-linear and/or nonlinear method. Each team determined input geotechnical properties by using empirical relationships and literatures based on own judgment, with the exception of the input motions. Herein, the characteristics of input motions were compared in terms of the frequency and period, and the selection of the depth to bedrock, on which the motions is impinged, was discussed considering geologic conditions in Korea. Furthermore, a variety of geotechnical properties such as shear wave velocity profiles and soil nonlinear curves were investigated with the input properties used in this RRT.

  • PDF

지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석 (Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR)

  • 강동범;허종철;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

노인의 휴대전화 사용속도에 영향을 미치는 요인 분석 (An Analysis of Factors Affection of Elderly's Speed of Mobile Phone Ability)

  • 양영애;조은주;박수희;박수정;김혜린;이명화;양미연
    • 대한인간공학회지
    • /
    • 제27권4호
    • /
    • pp.1-8
    • /
    • 2008
  • Objective: This study is to analyze the factor affecting elderly's speed of mobile phone ability. Method: Sixty healthy senior citizens who live in Kim-hye participated in Cognition, Visual perception, Speed of mobile phone ability and the collected data was analyzed by an independent multiple regression analysis. Result: The findings can be summarized as follows; 1. Although men were faster than women while using mobile phone, there was little satisfical significance(p<0.05). 2. Although people in their sixties were faster than people in their seventies while using mobile phone, there was minial difference(p<0.05). 3. The primary factor which affect mobile phone using speed is figure ground, visual memory, visual processing and the most beneficial discovery in the entire project is figure ground(p<0.05). Conclusion: The result of study showed that in order to enhance figure ground, visual memory, visual processing in mobile phone using speed. These results will be consider useful for elderly's mobile phone ability.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Calculation on the Ion Flow Field under HVDC Transmission Lines Considering Wind Effects

  • Wu, Jing;Gao, Sheng;Liu, Yuxiao
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2077-2082
    • /
    • 2015
  • Based on Deutsch assumption, a calculation method on the electric field over the ground surface under HVDC transmission lines in the wind is proposed. Analyzing the wind effects on the electric field and the space charge density the existing method based on Deutsch assumption is improved through adding the wind speed to the ion flow field equations. The programming details are illustrated. The calculation results at zero wind speed are compared with available data to validate the code program. Then the ionized fields which resulted from corona of ±800kV HVDC lines are analyzed. Both the electric field and the current density on the ground level are computed under different wind direction and speed. The computation results are in good agreement with measurements. The presented method and code program can be used to rapidly predict and evaluate the wind effects in HVDC transmission engineering.

잡음 대책법을 이용한 GSM 방식 이동전화기의 TDMA 잡음 개선에 관한 연구 (A Study on Performance Improvement of TDMA Noise in a GSM Mobile Phone using the Noise Measure Method)

  • 오세갑;최재명;강희조
    • 한국항행학회논문지
    • /
    • 제13권3호
    • /
    • pp.406-411
    • /
    • 2009
  • 본 논문에서는 GSM(Global System for Mobile communication) 방식의 이동전화기에서 TDMA 잡음을 분석하기 위하여 잡음 대책 방법에 대하여 알아보고, 또한 잡음의 발생 원인에 대하여 기술한다. 또한 잡음 대책 방법 중 차이분석법을 이용하여 MIC를 shielding하고, 비드나 캐퍼시턴스를 장착하고, PCB의 Ground 보강으로 TDMA 잡음을 9dB, 3.5dB, 6dB 감소시켰다.

  • PDF