• 제목/요약/키워드: School accident countermeasures

검색결과 27건 처리시간 0.026초

SD법을 이용한 해양사고 예방의 정책대안 분석 (A Study on the Alternative Plan for Prevention of Marine Accident using System Dynamic)

  • 금종수;장운재
    • 해양환경안전학회지
    • /
    • 제10권2호
    • /
    • pp.17-22
    • /
    • 2004
  • 해양사고는 맡은 원인이 서로 복잡하게 상호작용을 하여 발생하고 있다. 이러한 해양사고의 분석은 선박의 안전 운항상의 측면에서 매우 중요하다고 할 수 있다. 따라서 본 연구의 목적은 시스템다이내믹스법을 이용하여 해양사고 원인과 개선책에 대한 모델을 구축하고, 요소의 개선에 대한 효과를 분석하고자 한다. 본 연구의 수행을 위해 해양사고 원인과 개선책의 요소를 브레인스토밍법에 의해 추출하고, 인과지도상의 정량적, 정성적, 피드백루프로 변환하였다. 그리고 표준모델과 4가지 정책모델에 대해 23년간(1997-2020) 시뮬레이션을 수행하였다.

  • PDF

학교안전사고 분석모형에 관한 연구 (A Study on the Analysis Model for School Safety Accident)

  • 박상근;윤용기
    • 교육녹색환경연구
    • /
    • 제12권2호
    • /
    • pp.19-30
    • /
    • 2013
  • Low birthrate is causing a reduction in the number of students at kindergartens, elementary schools, middle schools and high schools nationwide and yet, school safety accidents are on a constant rise, which was reported to be 237 accidents a day on average in 2011. Such phenomenon is proving how the school safety policy is not doing what it was supposed to do. In order to decrease the school safety accidents, first, causes of the accidents should be analyzed and then, prevention measures should be designed. For that reason, the study looked into the present condition of the school safety accidents and safety accident theories and based on the results, "School Safety Accident Analysis Matrix Model" was proposed. With a matrix method of the accident types (17 of them) and hazard factors (9 of them) applied, the concerned model analyzed a total of 153 accident causes. In consideration of the results from the analysis, the study suggested that the education authority should open a safety organization and design a school safety policy that would systematically deal with safety education, prevention measures practice, accident investigation and analysis, and countermeasures practice as well.

전문 건설공사 재해원인 분석 기법에 관한 연구 (Analysis Techniques for Accident Causes of Subcontract Work at Construction Site)

  • 손기상;이경용;갈원모
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.34-42
    • /
    • 2009
  • There are many accident causes related to even an accident. As well four(4) stepped causes of one accident at construction sites are analyzed in the study. First, eleven(11) cause factors are set up at each step such as policy level, management, indirect, direct level which are discussed and determined by field experts with 15year experience or more. Therefore, one direct cause occurred in construction site can be connected to the previous cause than in direct and management, and policy problem of previous management. These questionnaires results are analyzed with three different methods such as weighing level by Delphi technique, correlation analysis, critical pass method. Three different methods show their characteristic to see which subcontract work is more dangerous or not. Subcontract or at a construction site can be use the above three different cases as they need at their site in order to make more effective countermeasures.

해양사고 예방을 위한 정책대안에 관한 연구 (A Study on the Alternative Plan for Prevention of Marine Accident using System Dynamic)

  • 장운재;권석재;금종수
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.29-34
    • /
    • 2004
  • 해양사고는 많은 원인이 서로 복잡하게 상호작용을 하여 발생하고 있다. 이러한 해양사고의 분석은 선박의 안전 운항상의측면에서 매우 중요하다고 할 수 있다. 따라서 본 연구의 목적은 시스템다이내믹스법을 이용하여 해양사고 원인과 개선책에 대한 모델을 구축하고, 요소의 개선에 대한 효과를 분석하고자 한다. 본 연구의 수행을 위해 해양사고 원인과 개선책의 요소를 브레인스토밍법에 의해 추출하고, 인과지도상의 정량적, 정성적, 피드백루프로 변환하였다. 그리고 표준모델과 4가지 정책모델에 대해 23년간($1997\~2020$) 시뮬레이션을 수행하였다.

  • PDF

Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling

  • Song, Mengchu;Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.542-552
    • /
    • 2018
  • Operators face challenges to plan alternative countermeasures when no procedure exists to address the current plant state. A model-based approach is desired to aid operators in acquiring plant resources and deriving response plans. Multilevel flow modeling (MFM) is a functional modeling methodology that can represent intentional knowledge about systems, which is essential in response planning. This article investigates the capabilities of MFM to plan alternatives. It is concluded that MFM has a knowledge capability to represent alternative means that are designed for given ends and a reasoning capability to identify alternative functions that can causally influence the goal achievement. The second capability can be applied to find originally unassociated means to achieve a goal. This is vital in a situation where all designed means have failed. A technique of procedure synthesis can be used to express identified alternatives as a series of operations. A case of station blackout occurring at the boiling water reactor is described. An MFM model of a boiling water reactor is built according to the analysis of goals and functions. The accident situations are defined by the model, and several alternative countermeasures in terms of operating procedures are generated to achieve the goal of core cooling.

안개지역의 교통사고심각도 모형개발에 관한 연구 (A Study on the Development of a Traffic Accident Ratio Model in Foggy Areas)

  • 이수일;원제무;하오근
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.171-177
    • /
    • 2008
  • As the risk of traffic accidents caused by mists emerged as a social problem, recently safety facilities to be prepared for mists are being actively installed when designing roads. But in some part, the facilities are being installed imprudently without analyzing the extent of occurrences of mists that would increase the risk of traffic accidents and appropriate countermeasures against the occurrences of mists are not being suggested. For that reason, in this study, first questionnaire surveys were executed on road users in order to draw the factors affecting the traffic accidents caused by mists, a mist traffic accident predicting model was developed and an accident seriousness determining model that can determine accident seriousness was developed. In this way, by extracting major factors affecting mist traffic accidents to grasp risk factors in roads to be caused by mists, safety of roads can be enhanced and traffic accidents in road operations can be decreased. As the affecting factors influencing mist traffic accidents, were extracted sightable distances, durations of mists and whether daytime or nighttime as major factors and the plan to install the facilities for the prevention of mist traffic accidents was suggested to prevent the traffic accidents to be caused by those factors and also the plan to operate roads considering sightable distances was suggested to solve the problem of insufficient sightable distances to be caused by mists was suggested. It is judged that the road safety in the areas where mists occur can be improved through foregoing methods.

전문 건설업종별 위험도 산정 방법에 관한 연구 (Formulation for Producing Risk Level of Each Construction Work)

  • 손기상;갈원모;송인용;최재남
    • 대한안전경영과학회지
    • /
    • 제12권3호
    • /
    • pp.13-19
    • /
    • 2010
  • Risk level for each construction work can be very important factors to establish advanced prevention measures. But it is important how to produce it. There are three different methods to set it up for construction situation. They are as follows; 1) occurrence frequency = the number of accident workers of each work kind / yearly accident workers 2) occurrence frequency = the number of accident workers of each work kind / yearly workers 3) occurrence frequency = the number of accident workers of each work kind / the total workers All these three concepts(=averaged concept)are analyzed. Additionally frequency based on discrete curve, and severity based on continuous curve are also combined for producing risk level with more scientific approach. This risk level can be very useful to make prevention plan or take measures at construction sites. This is study result can change existing risk level concept to new concept of it, namely rail way work and in-water work showed be high risk level and RC work be low risk level, different from the situation which we have thought commonly, so far.

로지스틱회귀분석 모델을 활용한 화학사고 사상사고 예측모형 개발 연구 (A Study on Accident Prediction Models for Chemical Accidents Using the Logistic Regression Analysis Model)

  • 이태형;박춘화;박효현;곽대훈
    • 한국화재소방학회논문지
    • /
    • 제33권6호
    • /
    • pp.72-79
    • /
    • 2019
  • 본 연구를 통해 화학사고 사상사고 예측모형을 개발하였다. 모형은 로지스틱회귀분석 모델을 활용하여 사상사고에 영향을 주는 변수를 도출하여 적용하였고, 통계적 검증방법과 오즈비를 활용하여 모형의 신뢰성 및 정확성을 검증하였다. 모형에 활용한 사고 자료는 과거 발생했던 화학사고 통계를 분석하여 활용하였으며, 사고의 유형, 원인, 발생 장소, 사상자 현황 및 사상자를 발생시킨 화학사고 등의 자료 분석을 통해 통계적으로 유의하게 나타난 독립변수(p < 0.05)를 적용하였다. 본 연구에서 개발한 모형은 사업장에서 화학사고로 인해 발생하는 사상사고의 예방 및 안전시스템 구축을 위한 연구로서 의의가 있다고 할 수 있다. 모형에 의한 분석결과 사상사고 발생에 가장 크게 영향을 미치는 변수는 폭발에 의한 화학사고인 것으로 조사되었다. 따라서 사업장에서 발생하는 폭발 유형의 화학사고를 예방하기 위한 대책마련이 시급하다고 판단된다.

Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea

  • Choi, Hyun-Tae;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.494-503
    • /
    • 2018
  • As public acceptance of nuclear energy in Korea worsens due to the Fukushima accident and the earthquakes that occurred in the Gyeongju area near the Wolsong nuclear power plant (NPP), estimating the effects of earthquakes has become more essential for the nuclear industry. Currently, most countermeasures against earthquakes are limited to large-scale disasters. Minor-scale earthquakes used to be ignored. Even though people do not feel the shaking due to minor earthquakes and minor earthquakes incur little damage to NPPs, they can change the environmental conditions, for instance, underground water level and the conductivity of the groundwater. This study conducted a questionnaire survey of residents living in the vicinity of an NPP to determine their perception and acceptance of plant safety against minor earthquakes. The results show that the residents feel earthquakes at levels that can be felt by people, but incur little damage to NPPs, as minor earthquakes (magnitude of 2.0-3.9) and set this level as a standard for countermeasures. Even if a minor earthquake has little impact on the safety of an NPP, there is still a possibility that public opinion will get worse. This study provides analysis results about problems of earthquake measures of Korean NPPs and specific things that can bring about an effect of deterioration of public acceptance. Based on these data, this article suggests that active management of minor earthquakes is necessary for the sustainability of nuclear energy.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.