• Title/Summary/Keyword: Schmidt hammer strength

Search Result 90, Processing Time 0.026 seconds

Determination of Removal Time of the Side Form in High Strength Concrete (고강도콘크리트 시공시 측면 거푸집 탈형시기의 결정)

  • Han Cheon-Goo;Han Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, method for the determination of removal time of the side forms in high strength concrete are discussed using the estimation model of compressive strength development, the development of bond strength and rebound number of P type Schmidt hammer in order to review the validity of existing regulation as to side form removal and offer effective quality control method. According to the results, as W/B increases by $10\%$, the setting time is shortened by about 2 hours. In the scope of the paper, required time to gain 8MPa of compressive strength is determined about 17 ${\~}$20 hours of age and $21{\~}25^{\circ}D{\cdot}D$ of maturity. Bond strength between form and concrete shows the highest value around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting completed, but after that, its amount shows decline tendency. The rebound value test with P type schmidt hammer can be started faster by 2${\~}$3 hours than compressive strength test. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 32. It is found from the results that existing regulation regarding removal time of the side form of high strength concrete provided in KCI needs no revision because required time to gain the strength provided in KCI has no adverse effect on strength development at early age and surface condition during stripping the side form. Effective procedure to decide the removal time of side form can be performed by applying P type Schmidt hammer.

The Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Test Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정)

  • Kim, Myung-Sik;Jang, Hei-Suk;Beak, Dong-Il;Sin, Nam-Gyun;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.145-148
    • /
    • 2006
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, In this study, a strength test was carried out destructive test by means of core sampling and traditional test. Non-destructive test was conducted Schmidt hammer and ultra-sonic method, the experimental parameter were concrete age, curing condition, test method and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

  • PDF

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer (Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

Evaluation of Compressive Strength of Concrete Using Aggregate of Basalt by Schmidt Hammer Testing (현무암골재를 사용한 콘크리트의 슈미트 햄머법 비파괴 시험에 의한 강도 평가)

  • 김상우;표대수;홍상희;이백수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.257-262
    • /
    • 2001
  • The objective of this study is to compare compressive strength and rebound number of Schmidt hammer of concrete using basalt aggregate to that using granite aggregate. And is to provide the reference data on the standardization of nondestructive test of concrete. According to test results, compressive strength of concrete using basalt aggregate is highly estimated under the same rebound number compared to that using granite aggregate about 5~15%. It is urgently that newly suggested estimation formula of compressive strength using basalt aggregate must be prescribed because estimation formula of compressive strength of concrete using basalt aggregates overestimates the strength compared to that using granite aggregate.

  • PDF

An Experimental Study on the Rebound Degree Tendency of Linear Hitting Test Hammer (선 타격 반발도 시험기의 반발도 경향에 관한 실험적 연구)

  • Ahn Hyo-Soo;Seo Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.313-322
    • /
    • 2005
  • Recently, as the remodeling market gradually substitute for new construction market and safety diagnosis for reconstruction apartment become a matter of principal Interest, it is demanded that scientific diagnosis and evaluation for existing concrete structure state. And it is increasing that the significance for reliability of data which is used for estimating the concrete compressive strength by nondestructive test. As a result, it is found that different proposal to material age and hitting angle is good to improving the reliability of presumption of concrete compressive strength in the linear hitting rebound test hammer. And for the reason that mutual relation between the compressive strength and rebound degree is highest in linear hitting rebound test hammer 25mm in all portion according to early md middle material age and hitting angle except the early material age $-45^{\circ}$, analysis showed that linear hitting rebound test hammer is more reliable than existing schmidt hammer in presumption of concrete compressive strength.

Analysis of Engineering Properties to Basalt in Cheju island (제주도 현무암의 공학적 특성 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To investigate the engineering properties of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area. The laboratory tests such as absorption test, specific gravity test, permeability test, Schmidt hammer test, elastic wave test and uniaxial compressive testwere carried out for the collected rock samples. The absorption, the specific gravity, the permeability, the elastic wave velocity and uniaxial compressive strengthwere investigated and analyzed as the results of these tests. As the result of regression analysis for the relationship between the rebound values from Schmidt hammer test and the uniaxial compressive strengths from uniaxial compressive test, especially, estimation equations were proposed using the rebound values from Schmidt hammer test. Therefore, the simple method to estimate the uniaxial compressive strength was provided.

  • PDF

Studies on Structural Degradation of Agricultural Reservoirs in Kyungki Province (경기도내 농업용 저수지의 제체 및 구조물의 노후도 조사 연구)

  • 장병욱;송창섭;박영곤;우철웅;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.90-97
    • /
    • 1997
  • Field inspections and laboratory tests for 31 agricultural reservoirs in Kyungki province were performed to provide basic data for maintenance and rehabilitation of agricultural reservoirs and to evaluate structural degradation of agricultural reservoirs Results of the study are as follows : 1) From survey's results of embankments, signs of settlement and lateral movement are appeared in 17 reservoirs. Crest settlement of 20~80cm, downstream settlement of 10~90cm, and 20~160cm lateral movement of embankments are detected from settlement and movement analysis of 17 reservoirs. Crest and downstream settlements and lateral movement are greatly occurred in 20 ~ 40 years after embankment construction. 2) About 39% of total reservoirs shows seepage problems occurred in the lower part of berm and retaining wall located between embankment and spillway. Probability of seepage problems is higher at retaining wall than others. 3) Concrete strength estimated by Schmidt hammer in structures of reservoirs is a range of 100~l50kgf/$cm^2$ and average deviation of concrete strength is about l0kgf/$cm^2$. Strength difference$({\delta}S)$ between compressive strength estimated by Schmidt hammer and uniaxial compressive strength of concrete core is about $\pm$100kgf/$cm^2$. This difference is due to absence or presence of reinforced bar in concrete core, variable length of concrete core and limitation of Schmidt hammer. 4) About 68% of total reservoirs shows leaching, 58% alkali-aggregate reaction and 71 % abrasion/frost. Leaching, alkali-aggregate reaction and abrasion/frost occurred in most reservoirs when passed 10 years after construction of structure parts.

  • PDF

Predicting Uniaxial Compressive Strength and Elastic Modulus Using Brazilian Test (Brazilian시험을 이용한 일축압축강도, 탄성계수의 추정 (I))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Ro, Jai-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.131-146
    • /
    • 2008
  • Many attempts have been made to determine the uniaxial compressive strength and elastic modulus of regular specimens of rock indirectly. But little experimental work has been done to find above two parameters using Brazilian test value up to date. This paper employs Brazilian test value to estimate uniaxial compressive strength and elastic modulus of sedimentary (sand stone, shale) and metamorphic (gneiss) rocks. High reliability of Brazilian test has been supported by the established conclusions drawn from point load test and Schmidt hammer strike values. It has also been found that this method can be applied easily and rapidly to the estimation of uniaxial compressive strength and elastic modulus of rock cores when direct tests are not available.

A study on the relationship between Schmidt Hammer's 'R' and bedrock microforms (기반암 하상 미지형과 슈미트 해머 반발 값과의 관계에 대한 연구)

  • KIM, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-69
    • /
    • 2012
  • Physical strength of the rock is the most important factor of resistance to erosion and has been measured through various way. Bedrock microforms, like potholes and grooves, are the forms sculpted by the erosional processes of flow and the location and morphology are strongly affected by the differential erosion. It also assumed that the physical strength of the rock controls the erosion rate and mode of erosion. The schmidt hammer has been used to measure the rock strength in the field for the geomorphological research. To find the relationship between the rock strength and microforms, Schmidt hammer's R(rebound) were measured in the Baeksuktan, middle reach of Gilancheon, Cheongsong, Gyungsangbuk do. The overall values of rebound of the local sandstone showed over 65 in most cases, so it can be regarded as 'very strong'. It is found that the rebound values of the rock surface decreased towards current water level. It also, however, found that there was no systematic differences in rebound values among the topographically high and lows in the bedrock surface. There was no statistically significant difference in rebound values of the area with well developed microforms and others. The values of R from the exposed faces and inside of the microforms are similar. In the case of conglomerate, the part with the gravel showed higher values that the parts with sands. The rebound values are decreased near of(<1cm) the geological discontinuities(including joint and faults), so this line of weakness could be the point of initiation of active erosion to form microforms. However there is large variations in rebound values within this part. It also should be mentioned that topological relation between the strike of the geologic discontinuities and flow direction looks control the mode of erosional processes.

Engineering Characteristics of the Sedimentary Rocks on Compressive Strength and Weathering Grade (압축강도와 풍화도에 관련된 퇴적암의 공학적 특성)

  • 이영휘;김영준;박준규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.5-17
    • /
    • 2000
  • The physical and mechanical properties of the sedimentary rocks deposited in Taegu and Kyongbuk region have been measured in the laboratory and at the field. Four kinds of rocks such as the shale, the mudstone, the siltstone and the sandstone were the object of this study. In sedimentary rock joint, bedding made it impossible to extract cores for uniaxial compressive test. Some correlations between the uniaxial compressive strength and the other characteristic values such as Point load index, Schmidt hammer rebound, Brazilian strength, P-wave velocity and Absorption ratio are made. The chemical and mineral compositions are also investigated by the XRF and XRD analysis. In addition, the weathering grade of rocks are classified by the quantitative indices of Point load index, Schmidt hammer rebound and Absorption ratio.

  • PDF