• Title/Summary/Keyword: Scenario simulation and prediction

Search Result 63, Processing Time 0.024 seconds

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Impact of the human body in wireless propagation of medical implants for tumor detection

  • Morocho-Cayamcela, Manuel Eugenio;Kim, Myung-Sik;Lim, Wansu
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described.

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

Evaluation of Site-specific Potential for Rice Production in Korea under the Changing Climate (지구온난화에 따른 우리나라 벼농사지대의 생산성 재평가)

  • Chung, U-Ran;Cho, Kyung-Sook;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.229-241
    • /
    • 2006
  • Global air temperature has risen by $0.6^{\circ}C$ over the last one hundred years due to increased atmospheric greenhouse gases. Moreover, this global warming trend is projected to continue in the future. This study was carried out to evaluate spatial variations in rice production areas by simulating rice-growth and development with projected high resolution climate data in Korea far 2011-2100, which was geospatially interpolated from the 25 km gridded data based on the IPCC SRES A2 emission scenario. Satellite remote sensing data were used to pinpoint the rice-growing areas, and corresponding climate data were aggregated to represent the official 'crop reporting county'. For the simulation experiment, we used a CERES-Rice model modified by introducing two equations to calculate the leaf appearance rate based on the effective temperature and existing leaf number and the final number of leaves based on day-length in the photoperiod sensitive phase of rice. We tested the performance of this model using data-sets obtained from transplanting dates and nitrogen fertilization rates experiments over three years (2002 to 2004). The simulation results showed a good performance of this model in heading date prediction [$R^2$=0.9586 for early (Odaebyeo), $R^2$=0.9681 for medium (Hwasungbyeo), and $R^2$=0.9477 for late (Dongjinbyeo) maturity cultivars]. A modified version of CERES-Rice was used to simulate the growth and development of three Japonica varieties, representing early, medium, and late maturity classes, to project crop status for climatological normal years between 2011 and 2100. In order to compare the temporal changes, three sets of data representing 3 climatological years (2011-2040, 2041-2070, and 2071-2100) were successively used to run the model. Simulated growth and yield data of the three Japonica cultivars under the observed climate for 1971-2000 was set as a reference. Compared with the current normal, heading date was accelerated by 7 days for 2011-2040 and 20 days for 2071-2100. Physiological maturity was accelerated by 15 days for 2011-2040 and 30 days for 2071-2100. Rice yield was in general reduced by 6-25%, 3-26%, and 3-25% per 10a in early, medium, and late maturity classes, respectively. However, mid to late maturing varieties showed an increased yield in northern Gyeonggi Province and in most of Kwangwon Province in 2071-2100.

Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream (상류제수문 방류조건에 따른 새만금호의 수질변화 예측)

  • Kim, Se Min;Park, Young Ki;Lee, Dong Joo;Chung, Mahn
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.373-386
    • /
    • 2017
  • This study simulated water quality item and flow rate of subbasin for Saemangeum watershed using Soil and Water Assessment Tool (SWAT) model and Environmental Fluid Dynamics Code (EFDC) model which simulate hydraulic and water quality in three-dimensions. The simulated values corresponded to observed value well. The result of simulation for floodgate operations at the M3 and M5 points, it exceeds water quality standard and at the M3 and D3 points, change of range for concentration is too wide, and upstream of Saemangeum reservoir is sensitive to inflow flow rate. Compared to the annual average concentration for observed station according to the discharge conditions, improvement of water quality for upstream was apparently compared to the downstream. Range of influence for change of water quality presented that maximum discharge condition, the influence range is 22 km in the direction of the Saemangeum downstream from the Mankyung bridge, and 15 km in the downstream direction of saemangeum in the Dongjin bridge. This study result demonstrated that floodgate operating at upstream has significant influence on water quality management of Saemangeum reservoir and it needs to be considered in plans of water quality management for Floodgate operation on Saemangeum reservoir.

Prediction of a Debris Flow Flooding Caused by Probable Maximum Precipitation (가능 최대강수량에 의한 토석류 범람 예측)

  • Kim, Yeon-Joong;Yoon, Jung-Sung;Kohji, Tanaka;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.115-126
    • /
    • 2015
  • In recent years, debris flow disaster has occurred in multiple locations between high and low mountainous areas simultaneously with a flooding disaster in urban areas caused by heavy and torrential rainfall due to the changing global climate and environment. As a result, these disasters frequently lead to large-scale destruction of infrastructures or individual properties and cause psychological harm or human death. In order to mitigate these disasters more effectively, it is necessary to investigate what causes the damage with an integrated model of both disasters at once. The objectives of this study are to analyze the mechanism of debris flow for real basin, to determine the PMP and run-off discharge due to the DAD analysis, and to estimate the influence range of debris flow for fan area according to the scenario. To analyse the characteristics of debris flow at the real basin, the parameters such as the deposition pattern, deposit thickness, approaching velocity, occurrence of sediment volume and travel length are estimated from DAD analysis. As a results, the peak time precipitation is estimated by 135 mm/hr as torrential rainfall and maximum total amount of rainfall is estimated by 544 mm as typhoon related rainfall.

Prediction of Evacuation Time for Emergency Planning Zone of Uljin Nuclear Site (울진원전 방사선비상계획구역에 대한 소개시간 예측)

  • Jeon, In-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • The time for evacuation of residents in emergency planning zone(EPZ) of Uljin nuclear site in case of a radiological emergency was estimated with traffic analysis. Evacuees were classified into 4 groups by considering population density, local jurisdictions, and whether they ate residents or transients. The survey to investigate the behavioral characteristics of the residents was made for 200 households and included a hypothetical scenario explaining the accident situation and questions such as dwelling place, time demand for evacuation preparation transportation means for evacuation, sheltering place, and evacuation direction. The microscopic traffic simulation model, CORSIM, was used to simulate the behavior of evacuating vehicles on networks. The results showed that the evacuation time required for total vehicles to move out from EPZ took longer in the daytime than at night in spite that the delay times at intersections were longer at night than in the daytime. This was analyzed due to the differences of the trip generation time distribution. To validate whether the CORSIM model fan appropriately simulate the congested traffic phenomena assumable in case of emergency, a benchmark study was conducted at an intersection without an actuated traffic signal near Uljin site during the traffic peak-time in the morning. This study indicated that the predicted output by the CORSIM model was in good agreement with the observed data. satisfying the purpose of this study.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.