• Title/Summary/Keyword: Scattering-ray

Search Result 583, Processing Time 0.023 seconds

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

A Study on the Difference of Scattered Rays with or Without Gonadal Shielding During Chest Computed Tomography (흉부 전산화 단층 촬영 검사 시 발생하는 생식선 차폐 유무에 따른 산란 선량 차이에 관한 연구)

  • Kwak, Jong Hyeok;Kim, Gyeong Rip;Sung, Hyun Chul;Kim, Seung Won;Song, Geun Sung;Choi, Min Gyeong;Lee, Sang Weon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • This study is a study on the difference in dose according to the presence or absence of gonadal shielding of scattered rays generated during chest computed tomography examination, and the scattered dose of the examination site was measured by placing the RadEye G-10 device in the center of the phantom. When the gonads are not shielded, the scattering lines of the whole, both sides, posterior and gonads are measured and Xenolite nolead Apron (0.35 mm PB), Xenolite nolead Apron (front 0.35 mm PB Mix back 0.25 mm PB, Skirt overlap), Half Apron After shielding with (0.5 mm PB), each scattered dose was measured. During chest computed tomography, the scattered dose of the test site was measured at 272 μSv, and when not shielded with Apron, the average total was 43 μSv, left 81 μSv, right part 82 μSv, posterior part 38.8 μSv, and Gonad part 16 μSv. Became. Xenolite nolead Apron shielded only the upper part and measured all 11.2 μSv, left part 43.1 μSv, right part 45.3 μSv, posterior part 12 μSv and Gonad part 5.2 μSv. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. Xenolite nolead Apron (Skirt overlap) covered the Pelvis area 360° and the dose was measured to be 5.6 μSv in the whole, 22.4 μSv in the left, 15.7 μSv in the right side, 6 μSv in the posterior part, and 3.2 μSv in the Gonad part. When measuring only the upper part with Half Apron, the total measurement was 10.7 μSv, the left part 42.6 μSv, the right part 40.6 μSv, the posterior part 11.3 μSv, and the Gonad part 4.7 μSv. The method of 360° shielding of the pelvic area showed a dose reduction of more than 80%, and a dose reduction effect of more than 70% was shown when all shielding was performed. In all computerized tomography examinations, research to reduce the exposure dose and various shielding devices were used. It is believed that continuous research on the technique is needed.

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.