• 제목/요약/키워드: Scattering parameter (S-parameter)

검색결과 64건 처리시간 0.025초

저온 동시소성 공정으로 제작된 3차원 매립 인덕터 모델링 (Modeling of 3-D Embedded Inductors Fabricated in LTCC Process)

  • 이서구;최종성;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.344-348
    • /
    • 2002
  • As microelectronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important fort many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (s-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

벡터 회로망 분석기 측정을 기반으로 한 3상 변압기의 시간영역 펄스 신호에 대한 응답 분석 (The Response to Impulse Signal on Three Phase Transformer using Vector Network Analyzer)

  • 김광호;정종만;나완수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.79-84
    • /
    • 2015
  • Transformer is widely used element on power system and industrial area. Especially the transformers installed at power system are exposed to an environment of arbitrary changed. Thus the prediction of degradation and the analysis of response to impulse are important. To conduct those works, the electrical characteristics of system should be analyzed, effectively. But the analysis of electrical characteristic in electric machine level such as pole and pad-mounted transformer is almost no, thus commercial VNA (Vector Network Analyzer) is used to getting the response in wide frequency range. However, the output power of VNA is usually under 10mW, so verification for effectiveness of measuring electrically large component should be conducted, firstly. Next, after getting total S-parameter of transformer, predicting impulse response can be performed in time-domain with circuit simulator. In this paper, it is introduced that verification effectiveness of VNA using transfer function from SFRA (Sweep Frequency Response Analyzer), firstly. Next, total S-parameter, six by six matix form, was built using measured 2 port S-parameter from vector network analyzer. To get the response to impulse which is defined by IEC 60060-1, time-domain simulation is conducted to ADS (Advenced Design System) circuit simulator.

Fully Integrated Electromagnetic Noise Suppressors Incorporated with a Magnetic Thin Film on an Oxidized Si Substrate

  • Sohn, Jae-Cheon;Han, S.H.;Yamaguchi, Masahiro;Lim, S.H.
    • Journal of Magnetics
    • /
    • 제12권1호
    • /
    • pp.21-26
    • /
    • 2007
  • Si-based electromagnetic noise suppressors on coplanar waveguide transmission lines incorporated with a $SiO_2$ dielectric layer and a nanogranular Co-Fe-Al-O magnetic thin film are reported. Unlike glass-based devices, large signal attenuation is observed even in the bare structure without coating the magnetic thin film. Much larger signal attenuation is achieved in fully integrated devices. The transmission scattering parameter ($S_{21}$) is as small as -90 dB at 20 GHz at the following device dimensions; the thicknesses of the $SiO_2$ and Co-Fe-Al-O thin films are 0.1 $\mu$m and 1 $\mu$m, respectively, the length of the transmission line is 15 mm, and the width of the magnetic thin film is 2000 $\mu$m. In all cases, the reflection scattering parameter ($S_{11}$) is below -10 dB over the whole frequency band. Additional distributed capacitance formed by the Cu transmission line/$SiO_2$/Si substrate is responsible for these characteristics. It is considered that the present noise suppressors based on the Si substrate are a first important step to the realization of MMIC noise suppressors.

Extraction of Passive Device Model Parameters Using Genetic Algorithms

  • Yun, Il-Gu;Carastro, Lawrence A.;Poddar, Ravi;Brooke, Martin A.;May, Gary S.;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • 제22권1호
    • /
    • pp.38-46
    • /
    • 2000
  • The extraction of model parameters for embedded passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, a method for optimizing the extraction of these parameters using genetic algorithms is presented. The results of this method are compared with optimization using the Levenberg-Marquardt (LM) algorithm used in the HSPICE circuit modeling tool. A set of integrated resistor structures are fabricated, and their scattering parameters are measured for a range of frequencies from 45 MHz to 5 GHz. Optimal equivalent circuit models for these structures are derived from the s-parameter measurements using each algorithm. Predicted s-parameters for the optimized equivalent circuit are then obtained from HSPICE. The difference between the measured and predicted s-parameters in the frequency range of interest is used as a measure of the accuracy of the two optimization algorithms. It is determined that the LM method is extremely dependent upon the initial starting point of the parameter search and is thus prone to become trapped in local minima. This drawback is alleviated and the accuracy of the parameter values obtained is improved using genetic algorithms.

  • PDF

다중산란 환경에서의 두개의 산란 위상함수 비교 (COMPARISON OF TWO SCATTERING PHASE FUNCTIONS IN MULTIPLE SCATTERING ENVIRONMENT)

  • 선광일
    • 천문학논총
    • /
    • 제25권4호
    • /
    • pp.113-118
    • /
    • 2010
  • The Henyey-Greenstein (H-G) phase function, which is characterized by a single parameter, has been generally used to approximate the realistic dust-scattering phase function in investigating scattering properties of the interstellar dust. Draine (2003) proposed a new analytic phase function with two parameters and showed that the realistic phase function is better represented by his phase function. If the H-G and Draine's phase functions are significantly different, using the H-G phase function in radiative transfer models may lead to wrong conclusions about the dust-scattering properties. Here, we investigate whether the H-G and Draine's phase functions would indeed produce significant differences in radiative transfer calculations for two simple configurations. For the uniformly distributed dust with an illuminating star at the center, no significant difference is found. However, up to ~ 20% of difference is found when the central star is surrounded by a spherical-shell dust medium and the radiation of $\lambda$ < $2000\;{\AA}$ is considered. It would mean that the investigation of dust-scattering properties using the H-G phase function may produce errors of up to ~ 20% depending on the geometry of dust medium and the radiation wavelength. This amount of uncertainty would be, however, unavoidable since the configurations of dust density and radiation sources are only approximately available.

Estimation of Antenna Correlation Coefficient of N-Port Lossy MIMO Array

  • Saputro, Susilo Ady;Nandiwardhana, Satya;Chung, Jae-Young
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.303-308
    • /
    • 2018
  • This paper proposes a simple yet accurate method for estimating the antenna correlation coefficient (ACC) of a high-order multiple-input multiple-output (MIMO) antenna. The conventional method employed to obtain the ACC from three-dimensional radiation patterns is costly and difficult to measure. An alternate method is to use the S-parameters, which can be easily measured using a network analyzer. However, this method assumes that the antennas are highly efficient, and it is therefore not suitable for lossy MIMO antenna arrays. To overcome this limitation, we define and utilize the non-coupled radiation efficiency in the S-parameter-based ACC formula. The accuracy of the proposed method is verified by the simulation results of a 4-port highly coupled lossy MIMO array. Further, the proposed method can be applied to N-port arrays by expanding the calculation matrix.

GaAs SBGFET의 잡음동작에 관한 연구 (Study on Noise Behavior of GaAs SBGFET)

  • 박한규
    • 대한전자공학회논문지
    • /
    • 제14권3호
    • /
    • pp.6-11
    • /
    • 1977
  • GaAs Schottky Barrier Gate 전계효과트랜지스터의 잡음동작을 잡음등가회로를 사용하여 연구하였으며, 부가구인 잡음근원은 pinch-off영역에서 GaAs FET bias에 의하여 구현되었다. 이것이 바로 intervalley 산란잡음과 hot electron에 의한 잡음이었다. 본 논문의 잡음등가회로에서는 carrier의 포화속도와 기생저항의 영향을 고려한 parameter를 정하였다.

  • PDF

Experimental Characterization and Signal Integrity Verification of Interconnect Lines with Inter-layer Vias

  • Kim, Hye-Won;Kim, Dong-Chul;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권1호
    • /
    • pp.15-22
    • /
    • 2011
  • Interconnect lines with inter-layer vias are experimentally characterized by using high-frequency S-parameter measurements. Test patterns are designed and fabricated using a package process. Then they are measured using Vector Network Analyzer (VNA) up to 25 GHz. Modeling a via as a circuit, its model parameters are determined. It is shown that the circuit model has excellent agreement with the measured S-parameters. The signal integrity of the lines with inter-layer vias is evaluated by using the developed circuit model. Thereby, it is shown that via may have a substantially deteriorative effect on the signal integrity of high-speed integrated circuits.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.