• Title/Summary/Keyword: Scattering Pattern

Search Result 181, Processing Time 0.031 seconds

Characterization of 3C-SiC grown on Si(100) water (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • Na, Kyung-Il;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern.

  • PDF

Characterization of 3C-SiC grown on Si(100) wafer (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • 나경일;정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of 4.3 $\mu\textrm{m}$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at 1350$^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was 4.3 $\mu\textrm{m}$/hr. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively The 3C-SiC distinct phonons of TO(transverse optical) near 796 cm$\^$-1/ and LO(longitudinal optical) near 974${\pm}$1 cm$\^$-1/ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra(2$\theta$=41.5$^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern

  • PDF

Application of a Boundary element Method to the Analysis of ultrasonic Scattering by Flaws (경계요소법을 이용한 결함의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho;Park, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2457-2465
    • /
    • 2002
  • Numerical modeling of a nondestructive testing system plays an important role in many aspects of quantitative nondestructive evaluation (QNDE). The ultimate goal of a model is to predict test results for a specific flaw in a material. Thus, in ultrasonic testing, a system model should include the transducer, its radiation pattern, the beam reflection and propagation, and scattering from defects. In this paper attention is focused on the scattering model and the scattered fields by defects are observed by an elastodynamic boundary element method. Flaw types addressed are void-like and crack-like flaws. When transverse ultrasonic waves are obliquely incident on the flaw, the angular distribution of far-field scattered displacements are calculated and presented in the form of A-scan mode. The component signals obtained from each scattering problem are identified and their differences are addressed. The numerical results are also compared with those obtained by high frequency approximate solutions.

Multiple Scattering of the Electromagnetic Wave by Randomly Distributed and Closely Located Cylindrical Scatterers (근접하고 있는 원통형 산란체들에 의한 전자파의 다중산란)

  • 이화춘;이대형;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1454-1460
    • /
    • 1993
  • The scattering pattern, due to an E-Polarized wave incident on M circular parallel dielectric cylinders, is computed. The multiply-scattered fields between the cylinders are considered. Modeling of infinite cylindrical scatterer of arbitrary cross sections by a number of circular cylinders is executed. By enforcing the boundary conditions on the surface of each cylinder, an infinite set of equations is obtained. The first order of scattering results from the excitation of each cylinder by only the incident wave. The second order results from the excitation of each cylinder by the first order of scattering from the remaining cylinders, and so no to an infinite order of scattering. Although the resulting equation is of infinite size, proper truncation yields very accurate numerical results.

  • PDF

Measurements of Developed Patterns by Direct writing of Electron Beam on Different Materials underneath PMMA

  • June, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • The developed patterns by direct writing of electron beam are measured by AFM, FESEM and optical profiler of WYKO NT3300. From different measurement methods, the measured linewidths of the patterns are shown a little bit wider than designed pattern size due to electrons scattering effect during direct writing of electron beam. The optimized conditions of these experiments are suggested and explained for the forming of structures below 0.1 ㎛ dimension size. Because of electron scattering effects from the different under layers such as Si, Si$_3$N$_4$ and aluminum, the developed pattern size is also influenced by the accelerated energy of electrons, dose, resist and soft and hard bake conditions in PMMA. The distributions of electron beam and calculations of backscattering coefficient are demonstrated by Monte Carlo simulation. From the measured results, the developed linewidth of PMMA/Al /silicon is shown a little bit wider than that of PMMA/Si$_3$N$_4$/silicon structure due to the backscattering effects.

Study on Experimental Modeling and Estimation of Roughness of Nanoscale Lapping Surface Based on Laser Scattering Patterns (레이저산란패턴 기반 나노 래핑 표면 거칠기의 실험적 모델링 및 추정에 관한 연구)

  • Hong, Yeon-Ki;Kim, Gyung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • In this study, a correlation between the roughness of nanoscale lapping surface and its laser scattering pattern has been identified experimentally. The characteristics of laser scattering on a reflected surface are investigated, and a laser scattering mechanism is newly designed by adopting the dark-field method. Laser scattering patterns resulting from nanoscale lapping shape are in the shape of crossed irregular lattice. In addition, optimum laser scattering images are obtained by the design of experiment, and the roughness of nanoscale lapping surface is estimated using regression analysis certain useful features of the laser scattering patterns. The results of fifty experiments on three types of nanoscale lapping surfaces show that the roughness of nanoscale lapping surfaces can be accurately estimated by the proposed mathematical modeling method.

Pattern Recognition for the Target Signal Using Acoustic Scattering Feature Parameter (표적신호 음향산란 특징파라미터를 이용한 패턴인식에 관한 연구)

  • 주재훈;신기철;김재수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2000
  • Target signal feature parameters are very important to classify target by active sonar. Two highly correlated broad band pulses separated by time T have a time separation pitch(TSP) of 1/T Hz which is equal to the trough-to-trough or peak-to-peak spacing of its spectrum. In this study, TSP informations which represent feature of each target signal were effectively extracted by the FFT. The extracted TSP feature parameters were also applied to the pattern recognition algorithm to classify target and to analyze their properties.

  • PDF

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

A Study on Pattern Fabrication using Proximity Effect Correction in E-Beam Lithography (전자빔 리소그래피에서의 근접효과 보정을 이용한 패턴 제작에 관한 연구)

  • Oh, Se-Kyu;Kim, Dong-Hwan;Kim, Seung-Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2009
  • This study describes the electron beam lithography pattern fabrication using the proximity effect correction. When electron beam exposes into electron beam resist, the beam tends to spread inside the substance (forward scattering). And the electron beam reflected from substrate spreads again (back scattering). These two effects influence to distribution of the energy and give rise to a proximity effect while a small pattern is generated. In this article, an electron energy distribution is modeled using Gaussian shaped beam distribution and those parameters in the model are computed to solidify the model. The proximity effect is analyzed through simulations and appropriate corrections to reducing the proximity effect are suggested. It is found that the proximate effect can be reduced by adopting schemes of dose adjustment, and the optimal dose is determined through simulations. The proposed corrected proximity effect correction is proved by experiments.

  • PDF

Spray Visualization Using Laser Diagnostics (레이저 계측법을 이용한 분무 가시화)

  • Yoon Youngbin;Koh Hyeonseok;Kim Dongjun;Khil Taeock
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.3-13
    • /
    • 2005
  • The optical patterantor provides the high resolution and quantitative information of the spray. Fuel distribution and Sauter Mean Diameter (SMD) can be measured from fluorescence and Mie-scat-tering images. To correct the attenuation of the laser beam and signal in dense spray region, the method to find the geometric mean of the signal intensities obtained from two cameras was evaluated and verified in a solid-cone spray. In high pressure environment, the increased number density of the droplets cause multiple scattering. The optical patternation technique using a laser beam instead of a laser sheet was applied to minimize the multiple scattering problem. The pattern of a coaxial spray was changed from hollow-cone to solid-cone shape, and the spray angle was reduced as the ambient pressure increased from 0.1 to 4.0 MPa.

  • PDF