• Title/Summary/Keyword: Scattering Null

Search Result 2, Processing Time 0.021 seconds

Investigation of Phase Singularity Problem in Microwave Breast Tomography

  • Son, Seong-Ho;Simonov, Nikolai;Lee, Kwang-Jae;Jeon, Soon-Ik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.332-335
    • /
    • 2014
  • This paper investigates the phase singularity problem in microwave image reconstruction utilizing unwrapped phase data. The measured phases of the electric fields in most microwave measurement systems are wrapped. Thus, a certain phase unwrapping process is necessary for reconstruction of the image of a high contrast object. This unwrapping, however, is difficult in the presence of scattering nulls on/near the unwrapping path. At the null point, the phase value will be rendered, resulting in a poor image reconstruction. In this paper, we investigate the phase singularity arising from electromagnetic scattering nulls in microwave breast tomographic imaging. We then propose a transformation technique for the measured electric fields that avoids phase singularity.

Changes in the Orientation and Frequency Dependence of Target Strength due to Morphological Differences in the Fish Swim Bladder (어류 부레의 형태학적 차이에 따른 음향산란강도의 자세 및 주파수 의존성의 변화)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • Controlled broadband acoustic scattering laboratory experiments were conducted using a linear chirp signal (95-220 kHz), and x-ray images of live and model fish with an artificial swim bladder were analyzed to investigate the changes in orientation and frequency dependence of target strength (TS) due to morphological differences in fish swim bladders. The broadband echoes from live and model fish were measured over an orientation angle range of ${\pm}45^{\circ}$ in the dorsal plane and in approximately $1^{\circ}$ increments. The location of nulls in the simulated echo response of the SINC [sinc function] model was overlaid on the TS map, showing the orientation and frequency dependence of fish TS, and they matched very well. It was possible to infer the equivalent fish scattering size (or swim bladder) using the null spacing in the experimentally obtained broadband TS map. Good agreement was observed for inferring the equivalent scattering size between the SINC model and the broadband echoes measured for the three fish species (black scraper Thamnaconus modestus; goldeye rockfish Sebastes thompsoni; and whitesaddled reef fish Chromis notatus). Some results of this inference are discussed.