• 제목/요약/키워드: Scattered Radiation Dose

검색결과 133건 처리시간 0.017초

6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구 (The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam)

  • 이승훈;곽근탁;박주경;김양수;차석용
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.145-151
    • /
    • 2013
  • 목 적: 본 연구에서 우리는 6 MeV 전자선의 조사야 확대에 따른 선량변화가 차폐물질 원자번호와 관계가 있음을 알아보고 그 영향인자를 분석 하고자 한다. 대상 및 방법: 먼저 평행평판형 전리함(Exradin P11)을 $25{\times}25cm^2$ 폴리스티렌 팬텀표면에 평탄하게 끼운다. 허용투과율 5% 두께의 알루미늄, 구리, 납 물질들을 팬텀 상단에 차폐시킨 후 조사야 $6{\times}6$, $10{\times}10$ 그리고 $20{\times}20cm^2$별로 측정하였다. 조사조건은 선원-표면간거리 100 cm에서 기준조사야인 $10{\times}10cm^2$에 6 MeV 전자선을 이용하여 100 cGy 조사하였다. 다음으로 MCNP (Monte Carlo N Particle Transport Code)를 이용하여 각 물질 통과 후 발생되는 광자수, 전자수, 그리고 축적에너지를 계산하였다. 결 과: 허용투과율 5% 두께에 대한 차폐물 종류에 따른 측정결과 조사야 $10{\times}10cm^2$을 기준으로 한 $6{\times}6cm^2$$20{\times}20cm^2$의 두께변화율은 알루미늄에서 각각 +0.06%와 -0.06%, 구리에서 각각 +0.13%와 -0.1%, 납에서 각각 -1.53%와 +1.92%였다. 계산결과 조사야 $10{\times}10cm^2$ 대비 $6{\times}6cm^2$, $20{\times}20cm^2$의 축적에너지는 차폐를 하지 않았을 경우 각각 -4.3%와 +4.85%, 알루미늄 사용 시 각각 -0.87%와 +6.93%, 구리 사용 시 각각 -2.46%와 +4.48%, 납 사용 시 각각 -4.16%와 +5.57%였다. 광자수의 경우 차폐를 하지 않았을 경우 각각 -8.95%와 +15.92%, 알루미늄 사용 시 각각 -15.56%와 +16.06%, 구리 사용시 각각 -12.27%와 +15.53%, 납 사용 시 각각 -12.36%와 +19.81%였다. 전자수의 경우 차폐를 하지 않았을 경우 각각 -3.92%와 +4.55%, 알루미늄 사용 시 각각 +0.59%와 +6.87%, 구리 사용 시 각각 -1.59%와 +3.86%, 납 사용 시 각각 -5.15%와 +4.00%였다. 결 론: 본 연구로 조사야 증가함에 따른 차폐물 두께가 저 원자번호에서 감소하며, 고 원자번호에서는 증가함을 볼 수 있었으며, 계산을 통해 저 원자번호물질에서는 저지방사선, 고 원자번호물질에서는 산란전자가 영향을 주는 것을 알 수 있었다.

  • PDF

핵임계사고시(核臨界事故時)에 있어서 속중성자선량(速中性子線量) 측정(測定) (Fast Neutron Dosimetry in Nuclear Criticality Accidents)

  • 육종철;노성기
    • Journal of Radiation Protection and Research
    • /
    • 제2권1호
    • /
    • pp.17-23
    • /
    • 1977
  • 여러가지 핵분열중성자(核分裂中性子) 스펙트럼에 $^{32}S(n,\;p),\;^{27}Al(n,\;{\alpha})$$^{115}In(n\;n')$ 여기함수(勵起函數)를 증율(增率)시켜 평균핵반응단면적(平均核反應斷面積)을 전자계산기(電子計算機)로 계산(計算)하였다. 그 결과(結果) 발단(發端)에너지가 높을수록 중성자(中性子)스펙트럼 변화(變化)에 따라 평균(平均) 단면적(斷面積)은 민감(敏感)하게 변화(變化)한다는 것이 판명(判明)되었다. 발단(發端)에너지가 비교적(比較的) 낮은 인디움의 경우(境遇), 핵분열특성(核分裂特性)에 따라 그의 평균(平均) 단면적(斷面積)은 크게 변화(變化)되지 않았는데 중성자(中性子) 산란작용(散亂作用)에 의(依)한 영향(影響)이 배제(排除)될 수만 있다면 인디움은 핵임계사고시(核臨界事故時)에 방출(放出)되는 중성자(中性子)의 적산계(積算計)로서 효과적(效果的)으로 사용(使用)될 수 있을 것 같았다. 더욱이 중성자선량환산인자(中性子線量換算因子)가 핵분열(核分裂) 중성자(中性子)스펙트럼에 거의 무관(無關)하다는 사실(事實)은 인디움을 핵임계사고시(核臨界事故時)의 중성자선량적산계(中性子線量積算計)로 사용할 수 있음을 뒷받침하는 것 같았다.

  • PDF

Gamma Knife Radiosurgery for Metastatic Brain Tumors with Exophytic Hemorrhage

  • Park, Eun Suk;Lee, Eun Jung;Yun, Jung-Ho;Cho, Young Hyun;Kim, Jeong Hoon;Kwon, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권5호
    • /
    • pp.592-599
    • /
    • 2018
  • Objective : Metastatic brain tumors (MBTs) often present with intracerebral hemorrhage. Although Gamma Knife surgery (GKS) is a valid treatment option for hemorrhagic MBTs, its efficacy is unclear. To achieve oncologic control and reduce radiation toxicity, we used a radiosurgical targeting technique that confines the tumor core within the hematoma when performing GKS in patients with such tumors. We reviewed our experience in this endeavor, focusing on local tumor control and treatment-associated morbidities. Methods : From 2007 to 2014, 13 patients with hemorrhagic MBTs were treated via GKS using our targeting technique. The median marginal dose prescribed was 23 Gy (range, 20-25). GKS was performed approximately 2 weeks after tumor bleeding to allow the patient's condition to stabilize. Results : The primary sites of the MBTs included the liver (n=7), lung (n=2), kidney (n=1), and stomach (n=1); in two cases, the primary tumor was a melanoma. The mean tumor volume was $4.00cm^3$ (range, 0.74-11.0). The mean overall survival duration after GKS was 12.5 months (range, 3-29), and three patients are still alive at the time of the review. The local tumor control rate was 92% (tumor disappearance 23%, tumor regression 46%, and stable disease 23%). There was one (8%) instance of local recurrence, which occurred 11 months after GKS in the solid portion of the tumor. No GKS-related complications were observed. Conclusion : Our experience shows that GKS performed in conjunction with our targeting technique safely and effectively treats hemorrhagic MBTs. The success of this technique may reflect the presence of scattered metastatic tumor cells in the hematoma that do not proliferate owing to the inadequate microenvironment of the hematoma. We suggest that GKS can be a useful treatment option for patients with hemorrhagic MBTs that are not amenable to surgery.