• Title/Summary/Keyword: Scatter Factor

Search Result 81, Processing Time 0.033 seconds

Organ Induction by Combined Dose of bFGF and HGF in Animal Cap Assay of Early Xenopus laevis Embryos. (Xenopus laevis 초기 배의 동물극 분리배양에서 bFGF와 HGF 혼합처리에 의한 기관유도)

  • 진정효;윤춘식;이호선;박용욱;정선우
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.375-384
    • /
    • 2004
  • Fibroblast growth factors (FGFs) are known to induce multiple functions in early development, including mesoderm formation, gastrulation movement and antero-posterior patterning. The induction of mesoderm from Xenopus presumptive ectoderm and the combination effect on inducing organs of bFGF(basic FGF) and HGF (Hepatocyte Growth Factor) were studied. Explants were cultured in the combined solution for 3 days to normal embryo arrive at St. 43. These effects on combined dose were examined by histological experiment and by immunohistochemical method. The concentrations of growth factors were tested in 0, 0.5, 1, 10 and also tested in 50 ng/ml of bFGF, and 0, 1, 10, 50 and 100ng/ml of HGF respectively. The synergistic effects were seen in the combined-dose of bFGF and HGF rather than in single dose. Various organs were differentiated and highest inducing effects were seen at the combined concentration of 1 ng/ml of bFGF and 10ng/ml of HGF, and at the concentration 10ng/ml of bFGF and 1 ng/ml of HGF. The bFGF induces various organs from cultured animal cap explants and the effects are time and dose-dependent. HGF is also a potent mitogen for renal tubular cells and for mature hepatocytes in primary culture. Eyes were developed in high percentage at the combined concentration of 1 and 10ng/ml of bFGF, and 1 and 10 ng/ml of HGF. From the induced eye and normal embryonic eye, RPE65 was commonly detected by monoclonal antibodies 40All and 25F5 and the localization of RPE65 was seen by AP reaction.

Morphometrical characteristics of River Meandering (하천 사행의 계량형태학적 특성)

  • 이재우;이원환
    • Water for future
    • /
    • v.14 no.1
    • /
    • pp.39-49
    • /
    • 1981
  • The purpose of this study is to examine the meander charactericstics for the rivers in Korea..In this study, the new characteristics factors of meander are proposed, and the relationships among the factors proposed in this study and the existing factors are derived. An attempt is made to find considerable relation among meander characteristics, but width and meander belt did not show any defined trend and considerable scatter of points was observed. Relationships among the meander length, belt and flowrate, etc., which are factors of meander characteristics, are analyzed the 67 rivers above 30km in length. Channel shape factor which is the ratio of the length from the starting point to the end to the channel lenght, tortuosity which is the ratio of the curved channel length against the channel length are suggested for a new characteristics factor of meander. They are well correlated with channel length, Horton's shape facotr and meander gradient, consequently have to be important measures of river meander. The result of the detailed comparison and the analysis of degree of sinuosity, velocity and water surface slop are brought light on the fact show that the curved reach is morestable than the straight one. The ratio of the meander length to the meander belt and its accumulative frequency showed excellent correlationship when plotted on the semi-log paper. The results of regression analysis of meander belt and meander length show linear for the South Han river branches and power curve for the Geum river and the Nakdong river branches.

  • PDF

A Study of Quality Control of Nuclear Medicine Counting System and Gamma Camera (핵의학 계측기기 및 감마카메라의 정도관리 연구)

  • 손혜경;김희중;정해조;정하규;이종두;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the current status of performing nuclear medicine quality control in korea and to test selected protocols of quality control of nuclear medicine counting system and gamma camera. Materials and Methods: Fifty three hospitals were included to investigate the current status of nuclear medicine quality control in korea. The precision of dose calibrator and thyroid uptake system was measured with Tc-99m 35.52 MBq for 2 minuets and Tc-99m 5.14 MBq for 10 sec every one minute, respectively. The sensitivity of CeraSPECT$^{TM}$ with low energy high resolution parallel hole collimator was measured using two cylindrical phantoms with 15 cm in diameter and 12 cm and 30 cm in heights containing Tc-99m. The correction factor for sensitivity of CeraSPECT$^{TM}$ was calculated using phantom data. The system planar sensitivity, uniformity, count rate and spatial resolution were measured for Varicam gamma camera with low energy high resolution parallel hole collimator using 140 keV centered 20% energy window, 256$\times$256 or 512$\times$512 matrix sizes. Results: The quality control of dose calibrator and well counter were showed poor performance status. On the other hand, The quality control of gamma camera and other systems were showed relatively good performance status. The results of precision of dose calibrator and thyroid uptake system was $\pm$1.4%(<$\pm$5%) and chi^2=29.7(>16.92), respectively. It showed that the sensitivity of CeraSPECT$^{TM}$ was higher in center slices compared with the edge slices. After correction of nonuniform sensitivities for patient data, it showed better results compare with prior to correction. System planar sensitivity of Varicam gamma camera was 4.39 CPM/MBq. The observed count rate at 20% loss was 102,407 counts/sec (head 1), 113,427 counts/sec (head 2), when input count rate was 81,926 counts/sec (head 1), 90,741 counts/sec (head 2). The spatial resolution without scatter medium were 8.16 mm of FWHM and 14.85 mm of FWTM. The spatial resolution with scatter medium were 8.87 mm of FWHM and 18.87 mm of FWTM. Conclusion: It is necessary to understand the importance of quality control and to perform quality control of nuclear medicine devices.vices.

  • PDF

Environmental Factors Affecting the Start and End of Cicadae Calling - The Case Study of Hyalessa fuscata and Cryptotympana atrata - (매미과 울음 시작 및 종료에 영향을 미치는 환경요인 - 참매미, 말매미를 대상으로 -)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.342-350
    • /
    • 2018
  • The purpose of this study was to identify the environmental factors that affect the beginning and end of calling by Hyalessa fuscata and Cryptotympana atrata, which are dominant cicada species in the central urban areas of Korea. The study area was Banpo Apartments in Seoul. The research period included two months, being from the end of July to the end of August 2015. We analyzed the start and end time of cicada calling, and on average H. fuscata started calling at 5:21 am and C. atrata started at 7:40 am. The average end time of calling was 6:31 pm for H. fuscata and 7:51 pm for C. atrata. From the scatter plot and box plot results, H. fuscata started calling at 05:00 am, whereas C. atrata consistently stopped calling at 20:00 pm compared to H. fuscata. Multiple regression analysis of the start and end time of cicada calling showed that sunrise time was a factor affecting the start of H. fuscata calling. The end time of H. fuscata calling was affected by sunset time and total cloud cover. The starting time of C. atrata calling was mostly affected by temperature and sunrise time. The effect of temperature was greater than that of sunrise time. The end time of C. atrata calling was strongly affected by sunset time, whereas peak temperature was also shown to affect the end time. From the above results, sunrise and sunset are thought to be the critical factor affecting the start and end time of H. fuscata calling. Therefore, H. fuscata started calling with sunrise, and the end time was also affected by sunset. Temperature was the factor most affecting the start of C. atrata calling and sunset was identified as the factor affecting the end time. Therefore, the start time of C. atrata calling shows variation with daily temperature changes, and C. atrata stop calling simultaneously with sunset.

Usefulness Assessment of Automatic Analysis Program for Flangeless Esser PET Phantom Images (Flangeless Esser PET Phantom 영상 자동 분석 프로그램의 유용성 평가)

  • NamGung, Chang-Kyeong;Nam, Ki-Pyo;Kim, Kyeong-Sik;Kim, Jeong-Seon;Lim, Ki-Cheon;Shin, Sang-Ki;Cho, Shee-Man;Dong, Kyung-Rae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.63-66
    • /
    • 2009
  • Purpose: ACR (American College of Radiology) offers variable parameters to PET/CT quality control by using ACR Phantom. ACR Phantom was made to evaluate parameters which are uniformity, attenuation, scatter, contrast and resolution. Manual analysis method wasn't good for the use of QC because values of parameter were changed as it may user and it takes long time to analysis. Ki-Chun Lim, a nuclear scientist in AMC, developed program that automatically analysis values of parameter by using ACR Phantom to overcome above problems. In this study, we evaluated automatic analysis program's usability, through the comparing SUV of each method, reproducibility of SUV when repeated analysis and the time required. Materials and Methods: Using Flangeless Esser PET Phantom, the ideal ratio of 4 : 1 hot cylinder and BKG but it actually showed a ratio of 3.89 to 1 hot cylinder and BKG. SIEMENS Biograph True Point 40 was used in this study. We obtained images using ACR phantom at Fusion WB PET Scan condition (2 min/bed) and 120 kV, 100 mAs CT condition. Using True X method, 3 iterations, 14 subsets, Gaussian filter, FWHM 4 mm and Zoom Factor 1.0, $168{\times}168$ image size. We obtained Max. & Min. SUV and SUV Mean values at Cylinder (8, 12, 16, 25 mm, Air, Bone, Water, BKG) by automatic program and obtained SUV by manual method. After that, we compared manual and automatic method. we estimate the time required from opened the image data to final work sheet was completed. Results: Automatic program always showed same result and same the time required. At 8, 12, 16 and 25 m cylinder, manual method showed 6.69, 3.46, 2.59, 1.24 CV values. The larger cylinder size became, the smaller CV became. In manual method, bone, air, water's CV were over 9.9 except BKG (2.32). Obtained CV of Mean SUV showed BKG was low (0.85) and bone was high (7.52). The time required was 45 second, 882 second respectably. Conclusions: As a result of difference automatic method and manual method, automatic method showed always same result, manual method showed that the smaller hot cylinders became, the lager CV became. Hot cylinders mean region size, the smaller hot cylinder size becomes we had some trouble in doing ROI poison setting. And it means increase in variation of SUV. The Study showed the time required of automatic method was shorten then manual method.

  • PDF

Correlation between Skin Translucency and Scattering Reflection using Miniaturized New Optical Device (피부 투명감 측정 기기의 소형화 및 피부의 확산 반사광과 투명감 사이의 연구)

  • Lee, Myeong-Ryeol;Jeong, Choon-Bok;Junng, Yu-Chul;Kim, Han-Kon;Nam, Gae-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • Skin darkness is the source of trouble to many women. Skin darkness is the state that while skin redness and brightness are reduced, skin yellowness is increased. Skin translucency which is measured by skin color, especially brightness is an another expression of skin darkness. Skin brightness is usually expressed by L value of $L^{*} \;a^{*}\; b^{*}$ (CIELAB color space system). However, it is hard to find the relationship between L value and perceptive efficacy such as translucency because the L value is just a factor of evaluation of skin darkness. The skin with high translucency has high scattering reflective light value than low value. In this study, we measured the skin translucency of 20 ~ 30 ages men and women face by both our designed previous device which use polarized light to detect surface and scatter reflective light independently and $Lumiscan^{TM}$ which is improved designed to confirm our new device working ability by calculation of relationship between trnaslucency and scattering reflective light value. The result of this study indicate that there is a high correlation (R = 0.732, p < 0.01) between translucency and scattering reflective light value, and suggest that $Lumiscan^{TM}$ is portable and easy measuring device more that previous device.

A Study on Development of Technology Protection Rating Methodology using Statistics (통계기법을 적용한 기술보호 등급분류 방법론 개발 연구)

  • Yang, Jeong-Eun;Yang, Younggyu;Cho, YunGyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.671-678
    • /
    • 2021
  • In a previous study, technology protection levels were set on a qualitative basis. That study lacked quantitative standards, so here, we conduct a study to complement the previous study and to present an objective standard. This paper provides a method of setting a technical protection level that applies statistical analysis. To set the technology protection level, statistical analysis of six technical survey items is performed first. Second, the technical survey items are analyzed by AHP to quantify the opinions of experts in order to derive weights for each technical survey item. Finally, by using the normal distribution scatter map and median calculation method, the technology protection level is selected in three stages using the final detailed factor technology score reflecting the weight. The technology protection level methodology developed through this study is the first methodology with objectivity that can evaluate defense technology by level. If this methodology is applied in practice, it is believed that it will provide a scientific and quantitative technology value judgment criterion when setting the technology protection level in the future.

The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery (Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2017
  • Purpose Recently, with the spread of SPECT/CT, various image correction methods can be applied quickly and accurately, which enabled us to expect quantitative accuracy as well as image quality improvement. Among them, the Collimator Detector Response(CDR) recovery is a correction method aiming at resolution recovery by compensating the blurring effect generated from the distance between the detector and the object. The purpose of this study is to find out quantitative change depending on the change in detection distance in SPECT/CT images with CDR recovery applied. Materials and Methods In order to find out the error of acquisition count depending on the change of detection distance, we set the detection distance according to the obit type as X, Y axis radius 30cm for circular, X, Y axis radius 21cm, 10cm for non-circular and non-circular auto(=auto body contouring, ABC_spacing limit 1cm) and applied reconstruction methods by dividing them into Astonish(3D-OSEM with CDR recovery) and OSEM(w/o CDR recovery) to find out the difference in activity recovery depending on the use of CDR recovery. At this time, attenuation correction, scatter correction, and decay correction were applied to all images. For the quantitative evaluation, calibration scan(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, water 9293 ml) was obtained for the purpose of calculating the calibration factor(CF). For the phantom scan, a 50 cc syringe was filled with 31 ml of water and a phantom image was obtained by setting $^{99m}TcO_4$ 123.3 MBq. We set the VOI(volume of interest) in the entire volume of the syringe in the phantom image to measure total counts for each condition and obtained the error of the measured value against true value set by setting CF to check the quantitative accuracy according to the correction. Results The calculated CF was 154.28 (Bq/ml/cps/ml) and the measured values against true values in each conditional image were analyzed to be circular 87.5%, non-circular 90.1%, ABC 91.3% and circular 93.6%, non-circular 93.6%, ABC 93.9% in OSEM and Astonish, respectively. The closer the detection distance, the higher the accuracy of OSEM, and Astonish showed almost similar values regardless of distance. The error was the largest in the OSEM circular(-13.5%) and the smallest in the Astonish ABC(-6.1%). Conclusion SPECT/CT images showed that when the distance compensation is made through the application of CDR recovery, the detection distance shows almost the same quantitative accuracy as the proximity detection even under the distant condition, and accurate correction is possible without being affected by the change in detection distance.

  • PDF

A Study of Dosimetric Characteristics of a Diamond Detector for Small Field Photon Beams (광자선 소조사면에 대한 다이아몬드 검출기의 선량특성에 관한 연구)

  • Loh, John-K.;Park, Sung-Y.;Shin, Dong-O.;Kwon, Soo-I.;Lee, Kil-D.;Kim, Woo-C.;Cho, Young-K.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.195-203
    • /
    • 1999
  • It is difficult to determine dosimetric characteristics for small field photon beams since such small fields do not achieve complete lateral electronic equilibrium and have steep dose gradients. Dosimetric characteristics of small field 4, 6, and 10 MeV photon beams have been measured in water with a diamond detector and compared to measurements using small volume cylindrical and plane parallel ionization chambers. Percent depth dose (PDD) and beam profiles for 6 and 10 MeV photon beams were measured with diamond detector and cylindrical ion chamber for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. Total scatter factors($S_{c,p}$) for 4, 6, and 10 MeV photon beams were measured with diamond detector, cylindrical and plane parallel ion chambers for small fields ranging from $1{\times}1\;to\;4{\times}4cm^2$. The $S_{c,p}$ factors obtained with three detectors for 4, 6, and 10 MeV photon beams agreed well ($\pm1.2%$) for field sizes greater than $2{\times}2,\;2.5{\times}2.5,\;and\;3{\times}3\;cm^2$, respectively. For smaller field sizes, the cylindrical and plane parallel ionization chambers measure a smaller $S_{c,p}$ factor, as a result of the steep dose gradients across their sensitive volumes. The PDD values obtained with diamond detector and cylindrical ionization chamber for 6 and 10MeV photon beams agreed well ($\pm1.5%$) for field sizes greater than $4{\times}4\;cm^2$. For smaller field sizes, diamond detector produced a depth-dose curve which had a significantly shallower falloff than that obtained from the measurements of relative depth-dose with a cylindrical ionization chamber. For the measurements of beam profiles, a distortion in terms of broadened penumbra was observed with a cylindrical ionization chamber since diamond detector exhibited higher spatial resolution. The diamond detector with small sensitive volume, near water equivalent, and high spatial resolution is suitable detector compared to ionization chambers for the measurements of small field photon beams.

  • PDF

The characteristics on dose distribution of a large field (넓은 광자선 조사면($40{\times}40cm^2$ 이상)의 선량분포 특성)

  • Lee Sang Rok;Jeong Deok Yang;Lee Byoung Koo;Kwon Young Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • I. Purpose In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100cm, size of field under $40{\times}40cm2$) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. II. Method & Materials In this study, using Multidata Water Phantom from standard SSD 100cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. III. Results & Conclusion In comparison with the standard dose data, parameter which measures between SSD 180cm and 350cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  • PDF