• Title/Summary/Keyword: Scarfed Nozzle

Search Result 4, Processing Time 0.02 seconds

Investigation of Scarfed Nozzle Plume effect using Numerical Analysis (수치해석을 이용한 Scarfed Nozzle 특성 연구)

  • Choi, Jiyong;Lee, Sunjae;Kim, Jinyong;Park, Jaebeom;Lee, Sangyun;Heo, Junyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1003-1005
    • /
    • 2017
  • 본 연구에서는 수치해석을 이용하여 Scarfed Nozzle의 플룸의 형태와 유동 특성을 분석하였다. 일반적인 추진기관의 노즐과 다르게 Scarfed Nozzle을 가지는 경우 축대칭의 형상을 가지지 않기 때문에 3차원 해석을 진행 하였다. Scarfed Nozzle의 플룸의 형태를 분석하기 위해 Canted Nozzle의 해석결과와 비교를 하여 연구를 수행하였다.

  • PDF

Thrust Loss of Propulsion System with Scarfed Nozzle (절삭 노즐 적용 추진기관의 추력 손실)

  • Lee, Jeongsub;Park, Jaebum;Lee, Sangyon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1108-1111
    • /
    • 2017
  • The nozzle exit shape is scarfed according to the external shape of missile when the nozzle axis should be canted from missile axis due to missile system application. There is inevitable thrust loss for the scarfed nozzle comparing to non-scarfed nozzle. The numerical analysis is necessary to calculate the thrust loss in design process, and ground tests of rocket motor were performed to verify the calculation results. From the comparison of non-scarfed nozzle and scarfed nozzle experiment results, the thrust loss from calculation was about 16.6% and that from experiments was about 15.0%.

  • PDF

A Numerical Analysis of Thrust Development and Control using Multi-Nozzle (다발 노즐을 사용한 추력 발생 제어에 관한 수치적 연구)

  • Park, Hyung-Ju;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.288-291
    • /
    • 2010
  • Numerical analysis was conducted on thrust vector control using multi-nozzle system. The nozzle using flow valve switch to control mass flow of multi scarfed nozzle to manage thrust was considered. The operating characteristics of scarfed nozzle, thrust component and moment of multi nozzle in terms of mass flow rate were investigated by three dimensional flow simulation.

  • PDF

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF