• Title/Summary/Keyword: Scanning mirror

Search Result 97, Processing Time 0.025 seconds

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Self-Assembled Structures of Glutaric Acid on Cu(110)

  • Park, Eun-Hui;Min, Yeong-Hwan;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.270-270
    • /
    • 2013
  • We have investigated the self-assembled structures of glutaric acid (HOOC-(CH2)3-COOH) on the Cu(110) surface as a function of coverage using Scanning Tunneling Microscopy (STM). At low coverage, glutaric acid molecules diffuse freely on Cu(110) surface at room temperature, thus they can't form ordered structures at this coverage. However, when we scanned the same area several times, novel structures have been created during scanning due to the field-induced self-assembly. Also, the induced structures are quite stable during continuous scanning process. At 0.25 ML, glutaric acid adsorbs as a bi-glutarate (-OOC(CH2)3-COO-) after annealing to 450 K producing a racemic conglomerate of coexisting mirror domains. Although the molecule is achiral, it forms chiral domains on the surface from adsorption-induced asymmetrization. At 0.5 ML coverage, zigzag structure is observed, and still gltutaric acid adsorbs as a bidentate configuration. This bi-glutarate structure is stable until 650. Finally, at 1ML, glutaric acid adsorbs as a mono-glutarate at room temperature forming close packed structures.

  • PDF

COMPONENT-BASED DEVELOPMENT OF OBSERVATIONAL SOFTWARE FOR KASI SOLAR IMAGING SPECTROGRAPH

  • Choi, Seong-Hwan;Kim, Yeon-Han;Moon, Yong-Jae;Choi, Kyung-Seok;Park, Young-Deuk;Jang, Bi-Ho;Kim, Su-Jin;Kim, Kap-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.463-470
    • /
    • 2005
  • In this paper, we have made the component-based development of observational software for KASI solar imaging spectrograph (KSIS) that is able to obtain three-dimensional imaging spectrograms by using a scanning mirror in front of the spectrograph slit. Since 2002, the KASI solar spectrograph has been successfully operated to observe solar spectra for a given slit region as well as to inspect the response functions of narrow band filters. To improve its capability, we have developed the KSIS that can perform sequential observations of solar spectra by simultaneously controlling the scanning mirror and the CCD camera via Visual C++. Main task of this paper is to introduce the development of the component-based software for KSIS. Each component of the software is reusable on the level of executable file instead of source code because the software was developed by using CBD (component-based development) methodology. The main advantage of such a component-based software is that key components such as image processing component and display component can be applied to other similar observational software without any modifications. Using this software, we have successfully obtained solar imaging spectra of an active region (AR 10708) including a small sunspot. Finally, we present solar $H{\alpha}$ spectra ($6562.81{\AA}$) that were obtained at an active region and a quiet region in order to confirm the validity of the developed KSIS and its software.

Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation

  • Hassan, Bassam;Greven, Marcus;Wismeijer, Daniel
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.381-386
    • /
    • 2017
  • PURPOSE. To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS. Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS. Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION. Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry

  • Jo, Taeyong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.317-322
    • /
    • 2013
  • We have proposed and demonstrated a low numerical aperture technique to measure the depth of through silicon vias (TSVs) using white-light scanning interferometry. The high aspect ratio hole like TSV's was considered to be impossible to measure using conventional optical methods due to low visibility at the bottom of the hole. We assumed that the limitation of the measurement was caused by reflection attenuation in TSVs. A novel interference theory which takes the structural reflection attenuation into consideration was proposed and simulated. As a result, we figured out that the low visibility in the interference signal was caused by the unbalanced light intensity between the object and the reference mirror. Unbalanced light can be balanced using an aperture at the illumination optics. As a result of simulation and experiment, we figured out that the interference signal can be enhanced using the proposed technique. With the proposed optics, the depth of TSVs having an aspect ratio of 11.2 was measured in 5 seconds. The proposed method is expected to be an alternative method for 3-D inspection of TSVs.

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves (레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지)

  • Kang, Se Hyeok;Jeon, Jun Young;Kim, Du Hwan;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.401-407
    • /
    • 2017
  • This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration (이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템)

  • Bae, Sang Woo;Kim, Min Young;Ko, Kuk Won;Koh, Kyung Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

Biological Applications of White Light Scanning Interferometry (백색광 주사간섭계의 생물학적 응용)

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.223-228
    • /
    • 2011
  • White light scanning interferometry has been employed to analyze surface features of diverse specimens. Long established in the field of materials engineering, the technique provides quantitative three-dimensional data as well as qualitative morphological images. It uses white light that is split and reflected from a reference mirror and an object. Merged together, the light generates interference patterns representing topographical contours of the object surface. The amplitude of the z-axis data is differentiated by gray scale. The technique allows the rapid, noncontact, and wide-field measurements for morphometry of biological specimens including chondrocytes, tooth enamel, and plant leaves. Quantification of the dimension of surface structures such as width, length, and elevation angle could be achievable by white light scanning interferometry. The light reflection from plant leaves has been assumed to be sufficient for the technique. Without special specimen preparations like conductive metal coating, the technique can be increasingly used for quantitative three-dimensional surface measurements of biological specimens.

The Study on Two-color PIV Algorithm for a Measurement of Droplet Velocity (액적의 속도 측정을 위한 이색 PIV 알고리즘 연구)

  • Lee, K.H.;Lee, C.S.;Oh, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1999
  • It has been known that spray characteristics have an important effect on the mixture formation and directly influence the engine performances and the emissions. Up to now, the measurement of droplet size is well developed such as PDPA and PMAS though the behavior of small droplets during secondary atomization is not clear. Particle image velocimetry(PIV), a planar measuring technique, is a very efficient tool for studying complicated behavior and a fast and reliable method to track numerous droplets during injection. In this study, two-color scanning PIV is designed to obtain quasi-instantaneous two dimensional velocity data by using he-ion laser, rotating mirror and beam splitter. This PIV method which has high temporal and spatial resolution provides the information about the small complex droplet behavior.

  • PDF