• Title/Summary/Keyword: Scanning Tunneling Spectroscopy

Search Result 51, Processing Time 0.036 seconds

Electronic Structures of Graphene on Ru(0001) : Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.307-307
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition processes. Such epitaxial graphene shows modified electronic structures caused by substrates. Here, local geometric and electronic structures of graphene grown on Ru(0001) will be presented. Scanning tunneling microscopy (STM) and spectroscopy (STS) was used to reveal energy dependent atomic level topography and position-dependent differential conductance spectra. Both topography and spectra show variations from three different locations in rippled structures caused by lattice mismatch between graphene and substrate. Based on the observed results, structural models for graphene on Ru(0001) system were considered.

  • PDF

Adsorption Structure and Doping Effect of Azidotrimethyltin on Graphene

  • Yang, Se-Na;Choe, Jeong-Heon;Kim, Gi-Jeong;Kim, Se-Hun;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.181-181
    • /
    • 2011
  • The adsorption structure and the electronic property of azidotrimethyltin (ATMT) on monolayer graphene was investigated using scanning tunneling microscopy and core-level photoemission spectroscopy. We also confirmed the n-type doping effect by scanning tunneling spectroscopy and work function measurements. We will systematically demonstrate the variation of characteristic of graphene induced by the chemical functionalized molecule as we confirmed the results using scanning tunneling microscopy in conjunction with core-level photoemission spectroscopy.

  • PDF

Superconductivity on Nb/Si(111) System : scanning tunneling microscopy and spectroscopy study

  • Jeon, Sang-Jun;Suh, Hwan-Soo;Kim, Sung-Min;Kuk, Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.390-390
    • /
    • 2010
  • Superconducting proximity effects of Nb/Si(111) were investigated with scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). A highly-doped($0.002\;{\omega}{\diamondsuit}cm$) Si wafer pieces were used as substrate and Nb source was thermally evaporated onto the atomically clean silicon substrate. The temperature of the silicon sample was held at $600^{\circ}C$ during the niobium deposition. And the sample was annealed at $600^{\circ}C$ for 30 minutes additionally. Volmer-Weber growth mode is preferred in Nb/Si(111) at the sample temperature of $600^{\circ}C$. With proper temperature and annealing time, we can obtain Nb islands of lateral size larger than Nb coherence length(~38nm). And outside of the islands, bare Si($7{\times}7$) reconstructed surface is exposed due to the Volmer-Weber Growth mode. STS measurement at 5.6K showed that Nb island have BCS-like superconducting gap of about 2mV around the Fermi level and the critical temperature is calculated to be as low as 6.1K, which is lower than that of bulk niobium, 9.5K. This reduced value of superconducting energy gap indicates suppression of superconductivity in nanostructures. Moreover, the superconducting state is extended out of the Nb island, over to bare Si surface, due to the superconducting proximity effect. Spatially-resolved scanning tunneling spectroscopy(SR-STS) data taken over the inside and outside of the niobium island shows gradually reduced superconducting gap.

  • PDF

STM investigation of as-cleaved and annealed single crystalline GeTe (111) surface

  • Kim, Ji-ho;Choi, Hoon-hee;Chung, In;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.140.2-140.2
    • /
    • 2016
  • Despite the growing interest in GeTe as a archetypal displacive ferroelectric material as well as the basis of related materials used in data-storage applications, atom-resolved study of single crystalline GeTe surface been lacking. Using low temperature scanning tunneling microscopy (STM) and spectroscopy (STS), we investigated as-cleaved and annealed surfaces of GeTe. We found that as-cleaved GeTe(111) surface is composed of at least two kinds of terraces at 78 K. While two terraces show metallic characteristics, they also exhibit distinctive I-V spectra and imaging conditions, with each being attributed to Ge-terminated, and Te-terminated surfaces respectively. GeTe(111) surfaces annealed at moderately elevated temperature introduces intricate networks of extended defect structures. We will present these data and discuss the role of vacancies in the formation of these structures.

  • PDF

Mixed-Island Formation and Electronic Structure of Metallo-Porphyrin Molecules on Au(111)

  • Kim, Ho-Won;Jeong, Gyeong-Hun;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.303-303
    • /
    • 2011
  • Orderings and electronic structures of organic molecules on metal substrates have been studied due to possible applications in electronic devices. In molecular systems, delocalized pi-electrons play important roles in the adsorption behaviors and electronic structures. We studied the adsorption and electronic structures of Co-Porphyrin molecules on Au(111) using scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperature. Molecules form closely packed two-dimensional islands on Au(111) surface with two different types, having different shape evolutions in our energy-dependent STM observations. The Kondo resonance state, occurred by spin exchange interaction between the Co center atom and conduction electrons in the metal substrate, was observed in one type, while it was absent in the other type in scanning tunneling spectroscopy measurements. Possible origins of two molecular shapes will be discussed.

  • PDF

Atomic-scale investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy

  • Lee, Han-Gil;Choe, Jeong-Heon;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.125-125
    • /
    • 2012
  • Graphene was epitaxially grown on a 6H-SiC(0001) substrate by thermal decomposition of SiC under ultrahigh vacuum conditions. Using scanning tunneling microscopy (STM), we monitored the evolution of the graphene growth as a function of the temperature. We found that the evaporation of Si occurred dominantly from the corner of the step rather than on the terrace. A carbon-rich $(6{\sqrt{3}}{\times}6{\sqrt{3}})R30^{\circ}$ layer, monolayer graphene, and bilayer graphene were identified by measuring the roughness, step height, and atomic structures. Defect structures such as nanotubes and scattering defects on the monolayer graphene are also discussed. Furthermore, we confirmed that the Dirac points (ED) of the monolayer and bilayer graphene were clearly resolved by scanning tunneling spectroscopy (STS).

  • PDF

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

Epitaxial Growth of Ge on Si(100) and Si(111) Surfaces (Si(100)와 Si(111) 표면의 Ge 에피 성장 연구)

  • Khang, Yun-Ho;Kuk, Young
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.161-165
    • /
    • 1993
  • The geometrical and electronic structure of epitaxially grown Ge on Si(100) and Si(111) surfaces has been studied by scanning tunneling microscopy. Since Ge atoms could be distinguished from Si atoms by scanning tunneling spectroscopy and voltage dependent STM images, the growth mode of the added layer could be studied. On the (100) surface with a (2${\times}$1) reconstruction, Ge overlayer grow preferentially on the B type step edges at 720K. On the (111) surface, Ge overlayer also grow on the step edges with (7${\times}$7) and (5${\times}$5) structure depending on their coverage and annealing temperature.

  • PDF

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

A Study on the Current-voltage Properties of Dipyridinium Molecule using Scanning Tunneling Microscopy (STM에 의한 Dipyridinium 유기분자의 전압-전류 특성 연구)

  • Lee, Nam-Suk;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.622-627
    • /
    • 2005
  • In this study, electrical properties of self-assembled dipyridinium dithioacetate molecule onto the Au(111) substrate is observed using Scanning Tunneling Microscopy(STM) by vortical structure of STM probe. At first, the Au(111) substrate is cleaned by piranha solution$(H_2SO_4:H_2O_2\;=\;3:1)$. Subsequently, 1 mM/ml of dipyridinium dithioacetate molecule is self-assembled onto the Au(111) surface. Using STM, the images of dipyridinium dithioacetate molecule which is self-assembled onto the Au(111) substrate, can be observed. In addition, the electrical properties(I-V) of dipyridinium dithioacetate can also be examined by using Scanning Tunneling Spectroscopy(STS). From the results of the measurement of the current-voltage(I-V), the property of Negative Differential Resistance(NDR) that shows the decreases of current according to the increases of voltage is observed. We found the NDR voltage of the dipyridinium dithioacetate is -1.42 V(negative region) and 1.30 V(positive region), respectively.