• Title/Summary/Keyword: Scanned data

Search Result 478, Processing Time 0.03 seconds

A Study on Reverse Engineering and 5-axis NC Machining of Impeller (임펠러의 역공학과 5축가공에 관한 연구)

  • 장동규;신재광;홍성균;이희관;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.60-68
    • /
    • 2004
  • This paper presents a method fur impeller modeling and 5-axis machining by the reverse engineering. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The surfaces can be modeled by using the characteristic curves such as hub curves, shroud curves and fillet curves. The characteristic curves are extracted from the scanned data and the inspection is performed between the surfaces generated by using the characteristic curves and the scanned data. Then, An impeller is machined by 5-axis mainlining and post-processing with inverse kinematic solution.

A Study on the Standardization In the Mandibular First Premolar of the Middle Aged Korean (하악 제1소구치의 표준화 연구)

  • Lee H.J.;Chun K.J.;Chung D.T.;Cho C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.252-255
    • /
    • 2005
  • Mandibular first premolars obtained from the middle-aged men about the ages of 50 were scanned using a Micro-CT. A Jig was made for a Micro-CT measurement to get reliable data from irregular teeth shape. Data were measured from the scanned 2-D images by way of measurement software. the methodology fer measurement of the mandibular first premolar was presented and according to this, the standardized mandibular first premolars of middle aged Korean males and females were made by using a rapid prototyping system.

  • PDF

Efficient Processing of Huge Airborne Laser Scanned Data Utilizing Parallel Computing and Virtual Grid (병렬처리와 가상격자를 이용한 대용량 항공 레이저 스캔 자료의 효율적인 처리)

  • Han, Soo-Hee;Heo, Joon;Lkhagva, Enkhbaatar
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.21-26
    • /
    • 2008
  • A method for processing huge airborne laser scanned data using parallel computing and virtual grid is proposed and the method is tested by generating raster DSM(Digital Surface Model) with IDW(Inverse Distance Weighting). Parallelism is involved for fast interpolation of huge point data and virtual grid is adopted for enhancing searching efficiency of irregularly distributed point data. Processing time was checked for the method using cluster constituted of one master node and six slave nodes, resulting in efficiency near to 1 and load scalability property. Also large data which cannot be processed with a sole system was processed with cluster system.

  • PDF

A Facial Animation System Using 3D Scanned Data (3D 스캔 데이터를 이용한 얼굴 애니메이션 시스템)

  • Gu, Bon-Gwan;Jung, Chul-Hee;Lee, Jae-Yun;Cho, Sun-Young;Lee, Myeong-Won
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.281-288
    • /
    • 2010
  • In this paper, we describe the development of a system for generating a 3-dimensional human face using 3D scanned facial data and photo images, and morphing animation. The system comprises a facial feature input tool, a 3-dimensional texture mapping interface, and a 3-dimensional facial morphing interface. The facial feature input tool supports texture mapping and morphing animation - facial morphing areas between two facial models are defined by inputting facial feature points interactively. The texture mapping is done first by means of three photo images - a front and two side images - of a face model. The morphing interface allows for the generation of a morphing animation between corresponding areas of two facial models after texture mapping. This system allows users to interactively generate morphing animations between two facial models, without programming, using 3D scanned facial data and photo images.

A Study on the Body Characteristics of High School Boys According to Their Drop Types (남자 고등학생의 드롭별 인체 특성에 관한 연구)

  • Hyun, Eun-Kyong;Nam, Yun-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.8
    • /
    • pp.1233-1241
    • /
    • 2010
  • This study analyzes the body characteristics of high school boys according to 3 different body types in order to improve the fit of upper garments. First, among the lateral body types, the straight body type was selected from the SizeKorea 3D scanned data and 2D measurement data. Second, high school boys (classified as straight lateral body type) were grouped into type B, A, and Y drop groups. The percentages of type B, type A, type Y are 17.8%, 48.1%, 32.1% respectively. The characteristics of the body types were analyzed. While the bust circumference were the same among the three body types (chest width, back width, back across shoulder, and bust width did not show a significant difference); however, waist and hip measurements showed a significant difference among the three body types. Third, the height of the high school boys ranged between 165cm and 180cm and the bust circumference between 85cm and 97cm. For the bust size categories, type B and type Y are distributed similarly; however, type A is distributed in the smaller bust size categories.

Accuracy of 14 intraoral scanners for the All-on-4 treatment concept: a comparative in vitro study

  • Gozde, Kaya;Caglar, Bilmenoglu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.388-398
    • /
    • 2022
  • PURPOSE. This in vitro study aimed to evaluate the accuracy of 14 different intraoral scanners for the All-on-4 treatment concept. MATERIALS AND METHODS. Four implants were placed in regions 13, 16, 23, and 26 of an edentulous maxillary model that was poured with scannable Type 4 gypsum to imitate the All-on-4 concept. The cast was scanned 10 times for each of 14 intraoral scanners (Primescan, iTero 2, iTero 5D, Virtuo Vivo, Trios 3, Trios 4, CS3600, CS3700, Emerald, Emerald S, Medit i500, BenQ BIS-I, Heron IOS, and Aadva IOS 100P) after the polyether ether ketone scanbody was placed. For the control group, the gypsum model was scanned 10 times with an industrial scanner. The first of the 10 virtual models obtained from the industrial model was chosen as the reference model. For trueness, the data of the 14 dental scanners were superimposed with the reference model; for precision, the data of all 14 scanners were superimposed within the groups. Statistical analyses were performed using the Kolmogorov-Smirnov, Shapiro-Wilks, and Dunn's tests. RESULTS. Primescan showed the highest trueness and precision values (P < .005), followed by the iTero 5D scanner (P < .005). CONCLUSION. Some of these digital scanners can be used to make impressions within the All-on-4 concept. However, the possibility of data loss due to artifacts, reflections, and the inability to combine the data should be considered.

Creating a digitized database of maxillofacial prostheses (obturators): A pilot study

  • Elbashti, Mahmoud;Hattori, Mariko;Sumita, Yuka;Aswehlee, Amel;Yoshi, Shigen;Taniguchi, Hisashi
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • PURPOSE. This study aimed to create a digitized database of fabricated obturators to be kept for patients' potential emergency needs. MATERIALS AND METHODS. A chairside intraoral scanner was used to scan the surfaces of an acrylic resin obturator. The scanned data was recorded and saved as a single standard tessellation language file using a three-dimensional modeling software. A simulated obturator model was manufactured using fused deposition modeling technique in a three-dimensional printer. RESULTS. The entire obturator was successfully scanned regardless of its structural complexity, modeled as three-dimensional data, and stored in the digital system of our clinic at a relatively small size (19.6 MB). A simulated obturator model was then accurately manufactured from these data. CONCLUSION. This study provides a proof-of-concept for the use of digital technology to create a digitized database of obturators for edentulous maxillectomy patients.

A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology (레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구)

  • Nguyen, Huu Cuong;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.