• 제목/요약/키워드: Scan-based test

검색결과 210건 처리시간 0.027초

센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법 (Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network)

  • 만동우;기현승;김현식
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

요오드화 조영제가 MR영상에 미치는 신호 변화 (Signal Change of Iodinated Contrast Agents in MR Imaging)

  • 정현근;김성호;강충환;이수호;김민기;이윤;김호철
    • 전자공학회논문지
    • /
    • 제53권12호
    • /
    • pp.131-138
    • /
    • 2016
  • 본 연구에서는 CT에서 사용되는 요오드화 조영제가 가돌리늄조영제와 비교하여 MR영상신호에 어떠한 영향을 미치는지 알아보고자 하였으며, 이에 따른 CT조영증강 검사 이후 MRI검사를 시행하는 프로토콜이 적정한지에 대하여 논하고자 하였다. 실험은 iodine과 gadolinium의 두 개의 팬텀을 제작하여 MRI에서의 통상적인 T1, T2, T2 FLAIR, 3D Angio 검사를 시행 후, 이에 대한 정량적 분석이 이루어졌다. 실험결과 체내 자유수(Free water)와 유사한 셀라인의 신호강도 SSI(Saline's Signal Intensity)는 iodine팬텀에서 각 175, 1231, 333, 37 [a.u]을 보였고, gadolinium팬텀에서 101, 1021, 321, 31 [a.u]을 기록하였다. 셀라인의 SI(Signal Intensity)를 기준으로 가장 큰 차이의 신호강도 BDEPS(the Biggest Difference of EPS)는 iodine팬텀에서 각 1297, 123, 757, 232 [a.u]를 보였고, gadolinium팬텀에서 793, 6, 1495, 365 [a.u]를 기록하였다. 이때 셀라인과 비교한 신호증강정도 EPS(Enhancement Percentage to Saline)는 iodine팬텀에서 641.1 -90.0, 127.3, 527%를 보였고, gadolinium팬텀에서 685.1, 99.4, 365.7, 1077.4% 기록하였다. BDEPS를 보이는 지점인 BP(BDEPS's point)는 iodine팬텀에서 900, 900, 477, 900 mmol을 보였고, gadolinium팬텀에서 4, 0.2, 0.2, 40 mmol을 기록하였다. 셀라인과 비교 하여 육안으로 SI변화를 확인할 수 있는 지점 CPSS(Change Point of SI to SSI)는 iodine팬텀에서 63, 423, 63, 29 mmol을 보였고, gadolinium팬텀에서 각 [50, 30], [4, 0.2], [4, 1], 0.2 mmol을 기록하였다. 본 연구를 통하여 iodine 역시 MR신호에 영향을 끼치며, 이는 gadolinium과는 다른 패턴을 보이는 것을 확인하였다. 이에 따라 임상현장에서 본 연구의 정량화 데이터를 감안하여 CT와 MRI 검사 순서 프로토콜을 결정한다면 유용한 진단학적 MR영상을 구현 할 수 있을 것으로 사료된다.

머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교 (Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information)

  • 홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

갑상선 결절의 술전진단과 술후 조직학적 결과의 비교분석 (Comparative Analysis of Preoperative Diagnotic Findings with Histologic Results in Thyroid Nodule)

  • 박진영;조현진;임성철
    • 대한두경부종양학회지
    • /
    • 제16권1호
    • /
    • pp.52-57
    • /
    • 2000
  • Purpose: The purpose of the study was to evaluate the sensitivity, specificity and accuracy between the FNAC and intraopevative frozen biopsy based upon the Final histologic diagnosis. Method: Authors studied 232 cases of thyroid nodule operated at Department of Surgery, College of Medicine, Chosun University, from January 1992 to December 1998. The medical records of these patients were studied retrospectively. The cytology of FNAC and the frozen section was compared to the final histologic diagnosis. 232 cases were analysed in regard to correlation of FNAC diagnosis and Intraoperative frozen section with final pathology, preoperative thyroid scan, thyroid function test, ultrasonography, final histopathology of the specimens, and surgical operation methods. 174 cases who underwent FNAC for diagnosis before operation, and Intraoperative frozen-section biopsy were classified according to whether the clinical diagnosis was benign, suspicious or malignant and evaluated the specificity sensitivity and accuracy. Result: Comparing with final histopathology, FNAC as a diagnostic test for thyroid nodules demonstrated an accuracy of 81.3%, a sensitivity of 87.5%, a specificity 86.5% with a false positivity of 2.9%, false negativity of 4.3%, respectively. and Intra-operative frozen section demonstrated an accuracy of 86.8%, a sensitivity of 87.5%, a specificity 92.1%. In the benign lesion, there was no difference in accuracy between FNAC(95.6%) and frozen section(95.1%) but, in the suspicious malignant lesion, frozen section(46.2%) was superior to FNAC(32.0%), and in the malignant disease, FNAC(97.1%) was superior to frozen section(92.3%). Conclusion: Intraoperative frozen section biopsy is useful in patients undergoing surgery for a thyroid nodule with a 'suspicious' malignant lesion and could reduce inadequate extensive excision without missing malignancy and second operation and help to determine the resection margin. It adds no information in patients with a diagnosis of malignancy following FNAC assessment and is of limited use in those in whom a benign lesion is diagnosed.

  • PDF

노년층 여성의 손 유형 분석 (Analysis on Hand Types of Elderly Women)

  • 최은희;도월희
    • 한국의류산업학회지
    • /
    • 제15권4호
    • /
    • pp.574-582
    • /
    • 2013
  • This study categorizes and analyzes hand types based on 2-Dimensional measurements of women in their 60-80's in order to establish initial data that can help develop a well-fitted glove and hand protector for elderly women. A total of 22 measurement items were selected to provide information about Size Korea (2010) 3D hand measurements. Participants in the study were 353 elderly women over the age of 60. Subjects were divided into two age groups (60's and over 70's). Statistical tests (such as Descriptive Analysis and T-test) analyzed the data and ascertained the age differences. A factor analysis and cluster analysis were conducted to classify elderly women hand types. The disparities between 20-30's and over 60's age groups were compared by T-test with the SPSS 20 program for Windows. The results in this study are follows: The hand shapes for elderly women were divided into 3 groups. Elderly women's Hand Type A is average length and the medium breadth hand type. Type B is the biggest length and breadth, Type C is the smallest length and breadth hand type. There were significant differences in the 20-30's and over 60's age groups for most hand length and breadth items. In addition, the mean measurement value of the length items decreased as the age increased; however, the diversity of items increased, so that it became shorter and wider. Further study should include the classification of hand shape dimensions for each figure type of sizing gloves for elderly women. We expect hand types to be applicable to the manufacture of gloves for elderly women.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • 스마트미디어저널
    • /
    • 제9권2호
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

국내 20대 여성의 허리와 허벅지 형태에 따른 하반신 체형 분류 (Lower Body Types Classification according to Waist and Thigh Shapes in Korean Woman in Their 20s)

  • 신가영;도월희
    • 한국의류산업학회지
    • /
    • 제22권4호
    • /
    • pp.495-503
    • /
    • 2020
  • This study classified lower body shape according to thigh and waist shape to improve the fit of skinny blue jeans in adult women in their 20s. We analyzed the three-dimensional automatic measurement data, three-dimensional indirect measurement data, and index data using the three-dimensional female (20-29 years old) body scan data provided by Size Korea (6th Korean Human Dimensional Survey Project). Factor analysis was performed to classify body type. We selected and analyzed 34 items related to thigh shape based on index items, angle items, and protrusion amount items from 99 items; consequently, seven factors were extracted and 82.39% of the total variance was explained. Cluster analysis according to factor analysis classified it into 4 types, and a post-test Duncan test was conducted to classify thigh features according to classified types. As a result, the characteristics of lower body shape according to the thigh types of women in their 20s are as follows. Lower Body Type 1 is shape with a more prominent belly and less prominent thighs. Lower Body Type 2 is a slender body figure with larger hips. Lower Body Type 3 has more prominent thighs compared to the waist and belly. Lower Body Type 4 has both a prominent belly and prominent thighs.

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

CT 정도관리를 위한 인공지능 모델 적용에 관한 연구 (Study on the Application of Artificial Intelligence Model for CT Quality Control)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.182-189
    • /
    • 2023
  • CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.