• Title/Summary/Keyword: Scan Type Magnetic Camera

Search Result 7, Processing Time 0.051 seconds

A Study of Nondestructive Evaluation Using Scan type Magnetic Camera

  • Hwang, Ji-Seong;Lee, Jin-Yi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1830-1835
    • /
    • 2005
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. And it is possible to interpret the distribution of the magnetic field when the dipole model is introduced. This study introduces the numerical and experimental considering of the quantitative evaluation of several size and shapes of the cracks using the magnetic field images of the scan type magnetic camera.

  • PDF

Modeling of a Scan Type Magnetic Camera Image Using the Improved Dipole Model

  • Hwang Ji-Seong;Lee Jin-Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1691-1701
    • /
    • 2006
  • The scan type magnetic camera is proposed to improve the limited spatial resolution due to the size of the packaged magnetic sensor. An image of the scan type magnetic camera, ${\partial}B/{\partial}x$ image, is useful for extracting the crack information of a specimen under a large inclined mag netic field distribution due to the poles of magnetizer. The ${\partial}B/{\partial}x$ images of the cracks of different shapes and sizes are calculated by using the improved dipole model proposed in this paper. The improved dipole model uses small divided dipole models, the rotation and relocation of each dipole model and the principle of superposition. Also for a low carbon steel specimen, the experimental results of nondestructive testing obtained by using multiple cracks are compared with the modeling results to verify the effectiveness of ${\partial}B/{\partial}x$ modeling. The improved dipole model can be used to simulate the LMF and ${\partial}B/{\partial}x$ image of a specimen with complex cracks, and to evaluate the cracks quantitatively using magnetic flux leakage testing.

Inspection of Cracks on the Express Train Wheel Using a High Speed Scan Type Magnetic Camera (초고속 스캔형 자기카메라에 의한 고속열차 차륜 탐상)

  • Lee, Jin-Yi;Hwang, Ji-Seong;Kwon, Seok-Jin;Seo, Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.943-950
    • /
    • 2008
  • A novel nondestructive testing (NDT) system, which is able to detect a crack with high speed and high spatial resolution, is urgently required for inspecting small cracks on express train wheels. This paper proposes a high speed scan type magnetic camera, which uses the multiple amplifying circuits and the crack indicating pulse output system. The linearly integrated Hall sensors are arrayed in parallel, and the Hall voltages from each sensor in the scanning direction are obtained and amplified. High-speed NDT can be achieved by using the exclusive analog-digital converter and micro-processor because the ${\partial}\;V_H/\;{\partial}$ x value, which provides the most important crack information, can be obtained by buffering and calculating. The effectiveness of the novel method was verified by examine using cracks on the wheel specimen model.

Evaluation of Rolling Contact Fatigue Evaluation of Wheel for High Speed Train Using a Scan Type Magnetic Camera (자기카메라에 의한 고속철도 차륜의 구름접촉 피로평가)

  • Hwang, Ji-Seong;Kwon, Seok-Jin;Lee, Jin-Yi;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.957-965
    • /
    • 2011
  • Recently, railway industry has been developed not only functional parts such as acceleration and high performance of the railway but also emotional parts such as improved ride comfort and blocking noise. However, some important components of railway such as wheel and rail always had exposed too much operation time, cyclic load and rolling contact directly. The variations of load, vibration and chemical compositions were caused of wheel and rail having a lot of different types of contact fatigue damages. Therefore, It is necessary to improve inspection and maintenance technology in order to ensure safety and reliability of railway. Many researchers have already been reported the technology. Magnetic camera, one of the non-destructive testing technique can be used to inspect and evaluate the changes of magnetic field in ferromagnetic and paramagnetic materials with cracks. When an electromagnetic is applied to a specimen, a magnetic field will be distorted around a crack on the specimen. In present paper, the distribution of magnetic property in wheel with cracks using magnetic camera had investigated. The crack can be detected and evaluated by distribution analysis of magnetic field. The magnetic camera technique can be detected and evaluated the crack by rolling contact fatigue.

  • PDF

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

Improvement of Signal Processing Circuit for Inspecting Cracks on the Express Train Wheel (고속 신호처리 회로에 의한 고속철도 차륜검사)

  • Hwang, Ji-Seong;Lee, Jin-Yi;Kwon, Suk-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.579-584
    • /
    • 2008
  • A novel nondestructive testing (NDT) system, which is able to detect a crack with high speed and high spatial resolution, is urgently required for inspecting small cracks on express train wheels. This paper proposes an improved signal processing circuits, which uses the multiple amplifying circuits and the crack indicating pulse output system of the previous scan-type magnetic camera. Hall sensors are arrayed linearly, and the wheel is rotated with static speed in the vertical direction to sensor array direction. Each Hall voltages are amplified, converted and immediately operated by using, amplifying circuits, analog-to-digital converters and $\mu$-processor, respectively. The operated results, ${\partial}V_H/{\partial}t$, are compared with a standard value, which indicates a crack existence. If the ${\partial}V_H/{\partial}t$ is larger than standard value, the pulse signal is output, and indicates the existence of crack. The effectiveness of the novel method was verified by examine using cracks on the wheel specimen model.

  • PDF