• Title/Summary/Keyword: Scale-model

Search Result 8,303, Processing Time 0.042 seconds

Flood Response Disaster Prevention Facility Simulator Design and Prototype Development Using Spill and Inundation Model (유출·침수모델을 이용한 홍수대응 방재시설 시뮬레이터 설계 및 프로토타입 개발)

  • Seo, Sung Chul;Kim, Ui Hwan;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.259-266
    • /
    • 2023
  • Global climate change is increasing, and the damage and scale of localized torrential rains are increasing. Pre-flood analysis simulation results should be derived from rainfall data through rainfall forecasts to prevent flood damage. In addition, it is necessary to control the use and management of flood response disaster prevention facilities through immediate decision-making. However, methods using spills and flood models such as XPSWMM and GATE2018 are limited due to professional usability and complex analytical procedures. Prototype (flood disaster prevention facility simulator) of this study is developed by calculating rainfall (short-term and long-term) using CBD software development methods. It is also expected to construct administrator and user-centric interfaces and provide GIS and visible data (graphs, charts, etc.).

Length-based stock assessment of the pacific yellowtail emperor in the Southern Sulawesi, Indonesia

  • I Nyoman Suyasa;Alifah Fitam Rakhma Sari;Siska Agustina;Rian Prasetia;Ratna Suharti;Toni Ruchimat;Budy Wiryawan;Irfan Yulianto
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.216-223
    • /
    • 2023
  • Pacific yellowtail emperor, Lethrinus atkinsoni Seale, 1910, is one of the most targeted reef fish species in Southern Sulawesi, Indonesia. Therefore, assessing its stock is important to understand the condition of the population, providing valuable inputs for sustainable fisheries management in the area. Here we assess the stock condition of L. atkinsoni in Southern Sulawesi, Indonesia, using the length-based spawning potential ratio model. A total of 4,887 individuals were collected from commercially small-scale fishers from January to October 2022. The total length, sex, and gonad maturity of the individuals were examined. We observed that the fish length ranged from 10.5 to 39.5 cm, with an average length of 23.3 cm. The sex ratio was equal (1:1.2) between male and female individuals. Length at first maturity and length at first capture were 23.4 and 19.6 cm, respectively. In addition, we observed a growth coefficient of 0.45/year, with an asymptotic length of 41.14 cm and natural mortality of 0.6/year. Based on these life history parameters, we observed the spawning potential ratio (SPR) value of 12%, indicating an unsustainable fishery level (SPR of < 30%). Further concerns related to the sustainability of the species and strategy to rebuild stock of the L. atkinsoni in Southern Sulawesi are of utmost importance.

Evaluation of Dissipation Behavior of Excess Pore Pressure in Liquefied Sand Deposit Using Centrifuge Tests (원심모형실험을 이용한 액상화 모래지반의 과잉간극수압 소산거동 분석)

  • Kim Sung-Ryul;Ko Hon-Yim;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • Soil liquefaction occurs by complex dynamic interaction between soil particles and pore fluid. Therefore, experimental researches have been widely performed to analyze liquefaction phenomena. In this research, centrifuge tests were performed to analyze the liquefaction behavior of horizontal sand ground. Centrifugal acceleration was 40g and the thickness of model ground was 25cm, which simulates 10m thickness in prototype scale. Viscous fluid was used as pore fluid to remove the time scaling difference between dissipation and dynamic shaking. Test results showed that the dissipation of excess pore pressure is the combined behavior of solidification and consolidation. In addition, the solidification rate, the ground acceleration amplitude, and the dynamic permeability during solidification were influenced by the confining pressure.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Frost Heave Force of Ground and Countermeasure for Damage of Structures (지반의 동상력과 구조물의 피해대책)

  • Rui, Da-Hu;Teruyuki, Suzuki;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • Frost action may cause extensive damage to building, structures, roads, railways and utility lines in seasonal frost. The research about frost heave of natural ground has been considerably performed. In late years various structures have become complicated with the development of social infrastructure maintenance. Therefore countermeasure to frost heave becomes a matter of great importance from a new viewpoint. This study was aimed at catching natural ground frost heaving force quantitatively. Frost heaving forces on circular steel plates which were set on ground surface were measured in field test. The frost heaving forces arise at freezing front propagates to the structures through frozen soil layer. Besides, a full scale model of multi-anchored retaining wall was installed in field, and the freezing lines, frost heave pressure to act on a wall block, and so on were measured. Finally, the position and shape of frost line were estimated by using numerical simulation and a method to determine replacement range was suggested with soil properties and weather data.

Load Carrying Capacity of Back-to-Back Reinforced Soil Walls (Back-to-Back 보강토 옹벽의 하중지지 특성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.41-52
    • /
    • 2008
  • This paper concerns the load carrying capacity of back-to-back reinforced soil wall for use in roadway and railway construction. Two test conditions, designed with due consideration of the FHW A design guideline, were first developed and a number of cases having different reinforcement lengths were tested under a surchage loading until failure. The results indicated that for cases in which two sides of reinforcements do not overlap, the wall behavior was similar to those of single wall. For cases in which the reinforcements overlap each other, on the other hand, the load carrying capacity of the wall significantly decreased when reinforced with reinforcement layers having lengths less than 50% of the wall height.

Prediction Oil and Gas Throughput Using Deep Learning

  • Sangseop Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.155-161
    • /
    • 2023
  • 97.5% of our country's exports and 87.2% of imports are transported by sea, making ports an important component of the Korean economy. To efficiently operate these ports, it is necessary to improve the short-term prediction of port water volume through scientific research methods. Previous research has mainly focused on long-term prediction for large-scale infrastructure investment and has largely concentrated on container port water volume. In this study, short-term predictions for petroleum and liquefied gas cargo water volume were performed for Ulsan Port, one of the representative petroleum ports in Korea, and the prediction performance was confirmed using the deep learning model LSTM (Long Short Term Memory). The results of this study are expected to provide evidence for improving the efficiency of port operations by increasing the accuracy of demand predictions for petroleum and liquefied gas cargo water volume. Additionally, the possibility of using LSTM for predicting not only container port water volume but also petroleum and liquefied gas cargo water volume was confirmed, and it is expected to be applicable to future generalized studies through further research.

Experimental study and analysis of design parameters for analysis of fluidelastic instability for steam generator tubing

  • Xiong Guangming;Zhu Yong;Long Teng;Tan Wei
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.109-118
    • /
    • 2023
  • In this paper, the evaluation method of fluidelastic instability (FEI) of newly designed steam generator tubing in pressurized water reactor (PWR) nuclear power plants is discussed. To obtain the parameters for prediction of the critical velocity of FEI for steam generator tubes, experimental research is carried out, and the design parameters are determined. Using CFD numerical simulation, the tube array scale of the model experiment is determined, and the experimental device is designed. In this paper, 7 groups of experiments with void fractions of 0% (water), 10%, 20%, 50%, 75%, 85% and 95% were carried out. The critical damping ration, fundamental frequency and critical velocity of FEI of tubes in flowing water were measured. Through calculation, the total mass and instability constant of the immersed tube are obtained. The critical damping ration measured in the experiment mainly included two-phase damping and viscous damping, which changed with the change in void fraction from 1.56% to 4.34%. This value can be used in the steam generator design described in this paper and is conservative. By introducing the multiplier of frequency and square root of total mass per unit length, it is found that the difference between the experimental results and the calculated results is less than 1%, which proves the rationality and feasibility of the calculation method of frequency and total mass per unit length in engineering design. Through calculation, the instability constant is greater than 4 when the void fraction is less than 75%, less than 4 when the void fraction exceeds 75% and only 3.04 when the void fraction is 95%.

Mediating Effect of Information Sources and Platform Characteristics in E-commerce: A Comparison between Korea and China

  • Da-Sol Lee;Je-Man Boo
    • Journal of Korea Trade
    • /
    • v.26 no.7
    • /
    • pp.185-202
    • /
    • 2022
  • Purpose - As overseas direct purchase transactions using e-commerce increase, the scale and scope of international trade are diversified, and the transaction volume using online platforms in e-commerce is increasing. The e-commerce market share will become more important because it is not only a medium connecting B2C, but also because it will expand the scope of trade. This study aims to reveal the factors that influence purchase intention according to Korean-Chinese consumers in e-commerce. In addition, the study has comprehensively confirmed the influence between each factor in the e-commerce environment by integrating and analyzing the characteristic factors of online information sources and platforms in one structural equation. Finally, the study confirmed that there is a significant difference in the influence relationship between Korean and Chinese consumers. Through this, the study will contribute to content production in the e-commerce market according to the target market and the expansion of the mutual entry of Korea and China. Design/methodology - This study aims to confirm the mediating effect of the details of the online information source characteristics and platform characteristics when the perceived quality affects purchase intention. It is confirmed that the factors affecting Korean and Chinese consumers differ. Findings - It was confirmed that differences exist according to the group of Korean or Chinese consumers for the entire research model. In the case of Korean consumers, the mediating factors when perceived quality affects purchase intention are expertise, reliability, entertainment, informativity, and convenience; in the case of Chinese consumers, the factors are expertise and informativity. Originality/value - This study proved that Korean and Chinese consumers cannot be regarded as having the same characteristics, and therefore, strategies aimed at each e-commerce market should be differentiated. In addition, although previous studies on online information sources and platform characteristics were not integrated, this study confirmed a significant influence relationship among the factors that could affect purchase intention in the actual e-commerce environment.

Implementation of a Simulation Tool for Monitoring Runtime Thermal Behavior (실시간 온도 감시를 위한 시뮬레이션 도구의 구현)

  • Choi, Jin-Hang;Lee, Jong-Sung;Kong, Joon-Ho;Chung, Sung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • There are excessively hot units of a microprocessor in today's nano-scale process technology, which are called hotspots. Hotspots' heat dissipation is not perfectly conquered by mechanical cooling techniques such as heatsink, heat spreader, and fans; Hence, an architecture-level temperature simulation of microprocessors is evident experiment so that designers can make reliable chips in high temperature environments. However, conventional thermal simulators cannot be used in temperature evaluation of real machine, since they are too slow, or too coarse-grained to estimate overall system models. This paper proposes methodology of monitoring accurate runtime temperature with Hotspot[4], and introduces its implementation. With this tool, it is available to track runtime thermal behavior of a microprocessor at architecture-level. Therefore, Dynamic Thermal Management such as Dynamic Voltage and Frequency Scaling technique can be verified in the real system.