• 제목/요약/키워드: Scale-invariant feature transform

검색결과 163건 처리시간 0.02초

Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 (Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform)

  • 이준복;김문화;장동식
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.21-26
    • /
    • 2003
  • 본 논문은 퓨리에 변환을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 기법을 제시한다. 특징 벡터는 3차원극좌표계를 이용하여 폐곡면 객체의 회전각도별 내측거리값을 퓨리에 변환을 통해 주파수 영역으로 변환하여 추출한다. 특징 벡터는 폐곡면 표면점과 중심점과의 관계를 나타내는 내측거리값을 활용하므로 위치 이동에 불변이고 내측거리값은 퓨리에 변환 전 정규화되기 때문에 크기 변화에 불변이며 퓨리에 변환 후 파워 스펙트럼을 적용하여 회전 변화 불변임을 보여주고 있다. 실험 결과 위치 이동, 크기 변화, 회전 변화에 불변임을 알 수 있고 서로 상이한 객체간에 변별력이 있어 객체 고유의 특징 벡터로써 활용이 가능함을 제시한다.

  • PDF

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

초음파 영상에서의 특징점 추출 방법 (Methods for Extracting Feature Points from Ultrasound Images)

  • 김성중;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.59-60
    • /
    • 2020
  • 본 논문에서는 특징점 추출 알고리즘 중 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 유의미한 특징점을 추출하기 위한 방법을 제안하고자한다. 추출된 특징점을 실제 이미지에 display 해봄으로써 성능을 확인해본다.

  • PDF

마커 없는 증강 현실 구현을 위한 물체인식 (Object Recogniton for Markerless Augmented Reality Embodiment)

  • 폴 안잔 쿠마;이형진;김영범;이슬람 모하마드 카이룰;백중환
    • 한국항행학회논문지
    • /
    • 제13권1호
    • /
    • pp.126-133
    • /
    • 2009
  • 본 논문에서는 마커 없이 증강 현실을 구현하기 위한 물체 인식 기법을 제안한다. 먼저 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 물체 영상으로부터 특징점을 찾는데, 이러한 특징점들은 비율, 회전 또는 이동시에도 그 특징이 변하지 않는 장점이 있다. 또한 조도의 변화에도 일부는 변화지 않는 특성을 갖는다. 추출된 특징점의 독립적인 특성을 이용해 화면내의 다른 이미지의 매칭 포인트를 찾을 수 있는데, 학습된 영상과 매칭이 이루어지면, 매칭된 점을 이용해 화면내의 물체를 찾는다. 본 논문에서는 장면의 첫 프레임에서 발생하는 템플릿 이미지와의 매칭을 통해 현재의 화면에서 물체를 인식하였다. 네 종류의 물체에 대해 인식 실험을 한 결과 제안한 방법이 우수한 성능을 갖는 것을 확인하였다.

  • PDF

SIFT 와 SURF 알고리즘의 성능적 비교 분석 (Comparative Analysis of the Performance of SIFT and SURF)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

Image Watermarking Scheme Based on Scale-Invariant Feature Transform

  • Lyu, Wan-Li;Chang, Chin-Chen;Nguyen, Thai-Son;Lin, Chia-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3591-3606
    • /
    • 2014
  • In this paper, a robust watermarking scheme is proposed that uses the scale-invariant feature transform (SIFT) algorithm in the discrete wavelet transform (DWT) domain. First, the SIFT feature areas are extracted from the original image. Then, one level DWT is applied on the selected SIFT feature areas. The watermark is embedded by modifying the fractional portion of the horizontal or vertical, high-frequency DWT coefficients. In the watermark extracting phase, the embedded watermark can be directly extracted from the watermarked image without requiring the original cover image. The experimental results showed that the proposed scheme obtains the robustness to both signal processing and geometric attacks. Also, the proposed scheme is superior to some previous schemes in terms of watermark robustness and the visual quality of the watermarked image.

자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘 (An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform)

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF

실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구 (A Study on Fisheye Lens based Features on the Ceiling for Self-Localization)

  • 최철희;최병재
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.442-448
    • /
    • 2011
  • 이동 로봇의 위치인식 기술을 위하여 SLAM(Simultaneous Localization and Mapping)에 관한 많은 연구가 진행되고 있다. 본 논문에서는 시야각이 넓은 어안렌즈를 장착한 단일 카메라를 사용하여 천장의 특징점을 이용한 자기위치 인식에 관한 방안을 제시한다. 여기서는 어안렌즈 기반의 비전 시스템이 가지는 왜곡 영상의 보정, SIFT(Scale Invariant Feature Transform) 기반의 강인한 특징점을 추출하여 이전 영상과 이동한 영상과의 정합을 통해 최적화된 영역 함수를 도출하는 과정, 그리고 기하학적 적합모델 설계 등을 제시한다. 제안한 방법을 실험실 환경 및 복도 환경에 적용하여 그 유용성을 확인한다.

Mellin 변환 방식과 BPEJTC를 이용한 영상 문자 인식 (Image Character Recognition using the Mellin Transform and BPEJTC)

  • 서춘원;고성원;이병선
    • 조명전기설비학회논문지
    • /
    • 제17권4호
    • /
    • pp.26-35
    • /
    • 2003
  • 자연계에서 다양한 형태로 입력되는 물체 영상을 효과적으로 인식하려면, 물체의 위치, 회전, 크기 변화에 관계없이 인식할 수 있는 왜곡 불변 특성의 추출이 반드시 요구된다. 이러한 왜곡 불변 특성은 동일한 영상의 변화에 대하여 인식 특성이 같고, 서로 다른 영상의 변화에 대해서는 분리 식별이 용이해야 한다. 이러한 인식 특성을 얻기위해 다각도로 많은 연구가 진행되고 있으며, 특히 회전 및 크기에 불변 특성을 동시에 얻을 수 있는 Mellin변환을 이용한 방법 등이 영상 인식에 많이 이용되고 있다[1][2][3]. 따라서, 본 논문에서는 Mellin 변환 방법에 의한 크기 및 회전에 대한 불변 특성을 얻을 수 있는 문자 인식 시스템을 위한 문자 특징 추출 방법을 제시하고자 하였으며, 영문자 26 문자의 입력 영상에 대하여 무게 중심법에 의한 문자 이동과 Mellin 변환 방법에 의한 특징 추출 방법에 보간법을 이용하여 특징을 추출하였으며, 추출된 특징에 대하여 특징의 이질도를 검사하여, 각 특징의 이질도가 약 50% 이상의 결과를 얻었다. 또한, Mellin 변환 방법에 의해 추출된 특징을 기준 영상으로 하는 BPEJTC(Binary Phase Extraction Joint Transform Correlator)를 이용하여 크기, 회전 및 이동에 따른 입력 문자의 인식이 가능한 BPEJTC 시스템을 구현하였으며, 이에 따라 본 논문에서는 약 90%의 인식률을 얻을 수 있었다. 따라서 본 논문에서 제시하는 Mellin 변환 방법에 따라 추출된 문자의 특징과 BPEJTC를 이용하여 영상 문자를 인식할 수 있는 영상 문자 인식 시스템의 가능성을 제시하였다.

컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘 (Extended SURF Algorithm with Color Invariant Feature and Global Feature)

  • 윤현섭;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.58-67
    • /
    • 2009
  • 대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.