• Title/Summary/Keyword: Scale-down model

Search Result 221, Processing Time 0.028 seconds

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Verification of Significancebetween Experiment Devices and Scaled-down Model for the Study of PSALI (PSALI 연구를 위한 실물대 실험 장치와 축소 모형간의 유의성 검증)

  • Lee, Jin-Sook;Kim, So-Yeon;Ha, Tae-Hyun;Jung, Young-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.11-20
    • /
    • 2011
  • PSALI is referred to the supplementary lighting for the interior lighting under the daily lighting situation, and pursuant to the pertinent regulations in energy savings design standard and others in recent architecture works, the importance thereof has been increasing gradually coupled with the energy performance index (EPI), energy savings plan and the like as well as expansion of submittal and implementation policies. However, this type of PSALI studies indeed have a number of limitations since it has surrounding environmental conditions in direction, season, region, climate, time, opening rate, window area ratio, actual index, reflection rate of finishing materials and others in the architecture work as well as frequent changes in interior lighting environment for variables in daily light volume flowing into the interior, and others. Therefore, this study has analyzed existing advance research cases to produce the actual-sized model and scaled-down model, and installed the artificial lighting of LED light source possible to reproduce with same capability on both models. As a result of comparison and analysis of the artificial lighting with the key light, it has certain level of error rate from the scaled down lighting device in certain rate and actual model butit was noticeably significant within specific scope.

Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine (메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Scale Effects of Stability Parameters in the Hydraulic Model Tests of Rubble Mound Coastal Structures (사석구조물(捨石構造物)의 안정성(安定性)에 관한 수리모형(水理模型)의 축척효과(縮尺効果))

  • Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.111-119
    • /
    • 1987
  • Scale effects of stability, run-up, run-down and reflection of layered coastal structures are investigated through the experiments with 7 kinds of hydraulic scale models. The occurrence mechanism and the control method of scale effects are also discussed. As a result, it is found that the similarity of permeability of inner layers plays an important role in the occurrence of scale effects, which has been neglected in the most of conventional model tests. To assure the best scale effects for permeable coastal structures, control of Reynolds numbers of the porous media flow in each layer is recommended. It is also found that Reynolds numbers in revetment, filter, and core layer must be greater than $2{\times}10^4$, $3{\times}10^3$, and $1{\times}10^3$, respectively.

  • PDF