• Title/Summary/Keyword: Scale-Free

Search Result 1,138, Processing Time 0.025 seconds

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Sources of Infection Among Confirmed Cases of COVID-19 in Jeju Province, Korea

  • Hwang, Moonkyong;Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.4
    • /
    • pp.245-250
    • /
    • 2021
  • Objectives: Jeju Province in Korea reported 627 coronavirus disease 2019 (COVID-19) cases between January 20, 2020, and March 31, 2021. This study analyzed the sources of infection among confirmed cases in Jeju Province, a self-governed island. Methods: The sources of infection were broadly categorized as follows: (1) infections from overseas (confirmed patients who reported travel overseas or contact with overseas travelers); (2) infections from outside Jeju Province (confirmed patients who had visited other provinces or had contact with individuals who had traveled to other provinces in Korea); and (3) unknown sources of infection (confirmed patients who were infected following contact with an infected person whose source of infection was unknown). The chi-square test was used to analyze the differences in the distributions of related variables for each source of infection. Results: Of the 627 confirmed cases, 38 (6.1%) were infections from overseas sources, 199 (31.7%) were from outside of Jeju Province, and 390 (62.2%) were from unknown sources. Jeju Province had no cases with an unknown source of infection during the first and second waves of the nationwide outbreak. Conclusions: Infections from overseas sources could be blocked from spreading to local communities in Jeju Province by conducting screening at the airport, along with the preemptive suspension of visa-free entry. In addition, considering the scale of the nationwide outbreak, measures must be established to delay outbreaks from unknown sources of infection caused by sources outside Jeju Province.

Outcomes of active learning methods in an electrocardiography course; identifying the effects of flipped, case-based, and team-based learning (액티브 러닝 학습방법을 활용한 심전도 개론 및 실습 교과과정의 학습효과와 만족도 조사)

  • Kim, Chul-Tae;Kim, Jung Sun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.23 no.2
    • /
    • pp.61-73
    • /
    • 2019
  • Purpose: This study aimed to introduce active learning methods, including flipped, case-based, and team-based learning in an electrocardiography (ECG) course and to investigate outcomes and satisfaction with these methods. Methods: To identify the learning effect of active learning, pre-and post-academic self-efficacy was compared between the experimental and control groups. In the experimental group, pre-and post-knowledge and clinical performance regarding ECG were also assessed. In addition, class satisfaction was investigated after application of active learning methods in the experimental group. Data were collected from 84 paramedic students and analyzed using SPSS 22.0 (IBM, Armonk, NY, USA). Results: The experimental group showed significant improvement in post-academic self-efficacy and knowledge. The experimental group also showed high clinical performance (9.83 out of 10 in ECG checking ability and 9.63 out of 10 in ECG reading ability). The mean satisfaction score was 4.23 out of 5 (responses based on a Likert scale) in the experimental group. Conclusion: Active learning in an ECG course was found to be highly effective and satisfactory. Furthermore, paramedic students can enhance their accountability and judgement with team-based learning through free engagement in discussion.

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

The Limit of Magnetic Helicity Estimation by a Footpoint Tracking Method during a Flux Emergence

  • Choe, Gwang Son;Yi, Sibaek;Jang, Minhwan;Jun, Hongdal;Song, Inhyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2018
  • Theoretically, the magnetic helicity transport flux through the solar surface into the upper atmosphere can be estimated indefinitely precisely by magnetic field footpoint tracking if the observational resolution is infinitely fine, even with magnetic flux emergence or submergence. In reality, the temporal and spatial resolutions of observations are limited. When magnetic flux emerging or submerging, the footpoint velocity goes to infinity and the normal magnetic field vanishes at the polarity inversion line. A finite observational resolution thus generates a blackout area in helicity flux estimation near the polarity inversion line. It is questioned how much magnetic helicity is underestimated with a footpoint tracking method due to the absence of information in the blackout area. We adopt the analytical models of Gold-Hoyle and Lundquist force-free flux ropes and let them emerging from below the solar surface. The observation and the helicity integration can start at different emerging stages of the flux rope, i.e., the photospheric plane initially cuts the flux rope at different levels. We calculate the magnetic helicity of the flux rope below the photospheric level, which is eventually to emerge, except the helicity hidden in the region to be swept by the blackout area with different widths. Our calculation suggests that the error in the integrated helicity flux estimate is about half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  • PDF

Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core

  • Mohammadia, M.;Rastgoo, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • In this study, the nonlinear vibration analysis of the composite nanoplate is studied. The composite nanoplate is fabricated by the functional graded (FG) core and lipid face sheets. The material properties in the FG core vary in three directions. The Kelvin-Voigt model is used to study the viscoelastic effect of the lipid layers. By using the Von-Karman assumptions, the nonlinear differential equation of the vibration analysis of the composite nanoplate is obtained. The foundation of the system is modeled by the nonlinear Pasternak foundation. The Bubnov-Galerkin method and the multiple scale method are used to solve the nonlinear differential equation of the composite nanoplate. The free and force vibration analysis of the composite nanoplate are studied. A comparison between the presented results and the reported results is done and good achievement is obtained. The reported results are verified by the results which are obtained by the Runge-Kutta method. The effects of different parameters on the nonlinear vibration frequencies, the primary, the super harmonic and subharmonic resonance cases are investigated. This work will be useful to design the nanosensors with high biocompatibility.

Localized Habitat Use of Endangered Oriental Storks (Ciconia boyciana) Recently Reintroduced into South Korea

  • Ha, Dong-Soo;Kim, Su-Kyung;Shin, Yong-Un;Yoon, Jongmin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.293-297
    • /
    • 2021
  • The oriental stork (Ciconia boyciana) is listed as an endangered species internationally. Its resident population has been extirpated in South Korea since 1971. Its predicted historical habitat included forests (54%), rice paddy fields (28%), grasslands (17%), river-streams (less than 1%), and villages (less than 1%) based on pre-extirpation records in a previous study. However, habitat attributes of recently reintroduced oriental storks since 2015 remain unknown. To examine habitat use patterns and home ranges of recently reintroduced oriental storks, 2015-2017 tracking data of 17 individuals were used to analyze their spatial attributes with a Kernel Density Estimate method and breeding status. Their habitat use patterns from peripheral to core areas were highly associated with increasing rice paddy fields (26%) and decreasing forested areas (55%). Scale-dependent home ranges were 51% smaller for breeders than for non-breeders on average. Our study results highlight that the habitat use pattern of reintroduced oriental storks seems to be comparable to the historical pattern where the used area is likely to be more centralized for breeders than for non-breeders in South Korea. Furthermore, the direction of habitat management for oriental storks should focus on biodiversity improvement of rice paddy fields with chemical free cultivation and irrigation.

Fatigue evaluation and CFRP strengthening of diaphragm cutouts in orthotropic steel decks

  • Ke, Lu;Li, Chuanxi;He, Jun;Lu, Yongjun;Jiao, Yang;Liu, Yongming
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.453-469
    • /
    • 2021
  • The cracking at the transverse diaphragm cutout is one of the most severe fatigue failures threatening orthotropic steel decks (OSDs), whose mechanisms and crack treatment techniques have not been fully studied. In this paper, full-scale experiments were first performed to investigate the fatigue performance of polished cutouts involving the effect of an artificial geometrical defect. Following this, comparative experimental testing for defective cutouts strengthened with carbon fiber-reinforced polymer (CFRP) was carried out. Numerical finite element analysis was also performed to verify and explain the experimental observations. Results show that the combinative effect of the wheel load and thermal residual stress constitutes the external driving force for the fatigue cracking of the cutout. Initial geometrical defects are confirmed as a critical factor affecting the fatigue cracking. The principal stress 6 mm away from the free edge of the cutout can be adopted as the nominal stress of the cutout during fatigue evaluation, and the fatigue resistance of polished cutouts is higher than Grade A in AASHTO specification. The bonded CFRP system is highly effective in extending the fatigue life of the defective cutouts. The present study provides some new insights into the fatigue evaluation and repair of OSDs.

Development of a Critical Pathway for a Korean Medicine Hospital Inpatient with Stroke (중풍 입원 환자 관리를 위한 임상경로 개발)

  • Kim, Mikyung;Han, Chang-ho
    • The Journal of Korean Medicine
    • /
    • v.42 no.2
    • /
    • pp.62-71
    • /
    • 2021
  • Objectives: This study was aimed to share the development process of the critical pathway (CP) for the treatment and management of stroke patients admitted to a Korean medicine hospital. Methods: A draft CP was prepared based on a review of relevant literature and medical records in the hospital, and its validity was reviewed by the in-hospital CP review committee. Each member evaluated all items in the CP on a 5-point Likert scale. Items with an average score of 3.5 or higher or an agreement rate of more than 80% were considered valid. In addition, free described opinions to improve the CP were also received from the review committee. Results: The horizontal axis of the CP was composed of a time domain, including 7 time points from hospitalization to discharge. The vertical axis was composed of 9 domains of medical practice. All items in the CP satisfied the validity criteria. The CP was revised, supplemented, and completed by reflecting the opinions of the committee. Conclusions: This CP will be taught to in-hospital users and will continue to be used with regular monitoring and a feedback plan. This study is expected to serve as a useful reference for standardizing the treatment process and delivering measures to improve the adequacy of Korean medicine treatment for stroke patients.

Density control of ZnO nanorod arrays using ultrathin seed layer by atomic layer deposition

  • Shin, Seokyoon;Park, Joohyun;Lee, Juhyun;Choi, Hyeongsu;Park, Hyunwoo;Bang, Minwook;Lim, Kyungpil;Kim, Hyunjun;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.401-406
    • /
    • 2018
  • We investigated the effect of ZnO seed layer thickness on the density of ZnO nanorod arrays. ZnO has been deposited using two distinct processes consisting of the seed layer deposition using ALD and subsequent hydrothermal ZnO growth. Due to the coexistence of the growth and dissociation during ZnO hydrothermal growth process on the seed layer, the thickness of seed layer plays a critical role in determining the nanorod growth and morphology. The optimized thickness resulted in the regular ZnO nanorod growth. Moreover, the introduction of ALD to form the seed layer facilitates the growth of the nanorods on ultrathin seed layer and enables the densification of nanorods with a narrow change in the seed layer thickness. This study demonstrates that ALD technique can produce densely packed, virtually defect-free, and highly uniform seed layers and two distinctive processes may form ZnO as the final product via the initial nucleation step consisting of the reaction between $Zn^{2+}$ ions from respective zinc precursors and $OH^-$ ions from $H_2O$.