• Title/Summary/Keyword: Scale height

Search Result 1,115, Processing Time 0.031 seconds

Analysis of Long-term Changes of Days with 25℃ or Higher Air Temperatures in Jeju (제주의 여름철 기온이 25℃ 이상인 날수의 장기변화 분석)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun;Park, Cheol-Hong
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • In this study, the time series of the number of days with $25^{\circ}C$ or higher temperatures in the Jeju region were analyzed and they showed a strong trend of increase until recently. To determine the existence of a climate regime shift in this time series, the statistical change-point analysis was applied and it was found that the number of days with $25^{\circ}C$ or higher temperatures in the Jeju region increased sharply since 1993. Therefore, in order to examine the cause of the sharp increase of the days with $25^{\circ}C$ or higher temperatures in the Jeju region, the differences between the averages of 1994~2013 and the averages of 1974~1993 were analyzed for the large-scale environment. In the Korean Peninsula including the Jeju region, precipitable water and total cloud cover decreased recently due to the intensification of strong anomalous anticyclones near the Korean Peninsula in the top, middle and bottom layers of the troposphere. As a result of this, the number of days with $25^{\circ}C$ or higher temperatures in the Jeju region could increase sharply in recent years. Furthermore, in the analysis of sensible heat net flux and daily maximum temperatures at 2 m, which is the height that can be felt by people, the Korean Peninsula was included in the positive anomaly region. In addition, the frequency of typhoons affecting the Korean Peninsula decreased recently, which reduced the opportunities for air temperature drops in the Jeju region.

Modified Proximal Scarf Osteotomy for Hallux Valgus

  • Young, Ki Won;Lee, Hong Seop;Park, Seong Cheol
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.479-483
    • /
    • 2018
  • Background: We developed a modified proximal scarf osteotomy technique for moderate to severe hallux valgus in an attempt to obtain better correction of the deformity. In addition, we compared the clinical and radiographic results of this modified technique with those of the classic scarf osteotomy reported in other studies. Methods: Between December 2004 and July 2009, 44 cases of modified proximal scarf osteotomy was performed in 35 patients with moderate hallux valgus. The American Orthopedic Foot and Ankle Society (AOFAS) score, visual analogue scale (VAS) score, range of motion of the first metatarsophalangeal joint, and radiographic results were evaluated. Results: The mean hallux valgus angle and the mean first intermetatarsal angle improved from an average of $32.2^{\circ}$ and $14.3^{\circ}$, respectively, to an average of $12.5^{\circ}$ and $8.6^{\circ}$, respectively. The distal metatarsal articular angle improved from an average of $18.7^{\circ}$ to $12.4^{\circ}$. The preoperative mean AOFAS and VAS scores were 47 points and 7 points, respectively, which improved to 86 points and 1 point, respectively, at the final follow-up. Limited range of motion occurred in two cases postoperatively. The height of the first metatarsal-cuneiform joint, which was an average of 15.9 mm preoperatively, did not change. The first metatarsal-talus angle increased from an average of $4.1^{\circ}$ to $7.1^{\circ}$. Conclusions: The modified proximal scarf osteotomy for the treatment of moderate hallux valgus showed similar results with the classic scarf osteotomy with regard to changes in the first intermetatarsal angle and postoperative satisfaction. Therefore, we suggest the modified proximal scarf osteotomy be considered as well as other proximal osteotomy in the treatment of moderate to severe hallux valgus.

Analysis of Smoke Behavior in Fire within Real-scale Theater Using FDS: Influences of Fire Curtain and Natural Smoke Vent Area (FDS를 이용한 실규모 공연장 무대 내 화재 시 연기 거동 분석: 방화막 및 자연배출구 면적의 영향)

  • Kim, Jae Han;Lee, Chi Young;Jeong, Lee Gyu;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.7-14
    • /
    • 2018
  • This study investigated numerically the influences of fire curtain and natural smoke vent area on smoke movement in the stage fire of a theater using FDS (Fire Dynamics Simulator). The dimension of the theater stage was 31 m in width, 34 m in depth, and 32 m in height. The area ratios between the natural smoke vent and stage were approximately 10%, 8%, 5%, and 1%. The gap distance between the fire curtain and proscenium wall was 0.5 m. The fire curtain and natural smoke vent area were observed to affect significantly the behavior of smoke movement to the auditorium and the mass flow rates of inflow and outflow through the natural smoke vent and proscenium opening. In addition, under the same natural smoke vent area, the pressure in the stage with a fire curtain was lower than that without a fire curtain.

Tolerability and Effect of Early High-Dose Amino Acid Administration in Extremely Low Birth Weight Infants

  • Choi, Jin Wha;Kim, Jisook;Ahn, So Yoon;Chang, Yun Sil;Park, Won Soon;Sung, Se In
    • Neonatal Medicine
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose: The aim of this study is to examine the tolerability and effect of early high-dose amino acid administration in extremely low birth weight infants (ELBWIs). Methods: This retrospective cohort study included ELBWI (birth weight <1,000 g, n=142). Biochemical, nutritional, and neurodevelopmental data were compared between infants who received conventional low amino acid (LAA; 1.5 g/kg/day) and those who received high amino acid (HAA; 3 g/kg/day) within the first 48 hours after birth. Neurodevelopmental data included weight, height, and head circumference at discharge, 12 to 14 and 18 to 24 months of corrected age and the Korean Bayley Scale of Infant Development II (K-BSID-II) score at 18 to 24 months of corrected age. Results: The HAA group demonstrated higher peak plasma albumin ($3.0{\pm}0.4$ vs. $3.2{\pm}0.5$, P<0.05) and lower serum creatinine ($1.7{\pm}0.9$ vs. $1.4{\pm}0.8$, P<0.05) during the first 14 days than the LAA group. Full enteral feeding was achieved significantly earlier in infants in the HAA group than in infants in the LAA group ($46.2{\pm}23.0days$ vs. $34.3{\pm}21days$, P<0.01). There was no difference between the two groups in the z score changes in all growth indicators from birth to discharge and at 12 to 14 and 18 to 24 months of corrected age, as well as in the K-BSID-II score at 18 to 24 months of corrected age. Conclusion: Aggressive administration of amino acids during the first 2 days of life in ELBWI was well tolerated and correlated with earlier full enteral feeding, but did not improve growth and neurodevelopment.

Application of the Artificial Coral Reef as a Coastal Erosion Prevention Method with Numerical-Physical Combined Analysis (Case Study: Cheonjin-Bongpo Beach, Kangwon Province, South Korea)

  • Hong, Sunghoon;Jeong, Yeon Myeong;Kim, Taeyoon;Huynh, Van Men;Kim, Inho;Nam, Jungmin;Hur, Dong Soo;Lee, Jooyong;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Artificial Coral Reefs (ACRs) have been introduced to help solve coastal erosion problems, but their feasibility has not been assessed with field data. This study conducted a feasibility analysis of ACRs on their erosion mitigation effects by performing a case study of Cheonjin-Bongpo beach, South Korea. A numerical-physical combined analysis was carried out using a SWAN model simulation and physical model test with a scale of 1/25 based on field observations of Cheonjin-Bongpo beach. Both Dean's parameter and the surf-scaling parameter were applied to comparative analysis between the absence and presence conditions of the ACR. The results for this combined method indicate that ACR attenuates the wave height significantly (59~71%). Furthermore, ACR helps decrease the mass flux (~50%), undertow (~80%), and maximum wave set up (~61%). The decreases in Dean's parameter (~66%) and the surf-scaling parameter suggest that the wave properties changed from the dissipative type to the reflective type even under high wave conditions. Consequently, an ACR can enhance shoreline stability.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Assessment of the Prediction Derived from Larger Ensemble Size and Different Initial Dates in GloSea6 Hindcast (기상청 기후예측시스템(GloSea6) 과거기후 예측장의 앙상블 확대와 초기시간 변화에 따른 예측 특성 분석)

  • Kim, Ji-Yeong;Park, Yeon-Hee;Ji, Heesook;Hyun, Yu-Kyung;Lee, Johan
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, the evaluation of the performance of Korea Meteorological Administratio (KMA) Global Seasonal forecasting system version 6 (GloSea6) is presented by assessing the effects of larger ensemble size and carrying out the test using different initial conditions for hindcast in sub-seasonal to seasonal scales. The number of ensemble members increases from 3 to 7. The Ratio of Predictable Components (RPC) approaches the appropriate signal magnitude with increase of ensemble size. The improvement of annual variability is shown for all basic variables mainly in mid-high latitude. Over the East Asia region, there are enhancements especially in 500 hPa geopotential height and 850 hPa wind fields. It reveals possibility to improve the performance of East Asian monsoon. Also, the reliability tends to become better as the ensemble size increases in summer than winter. To assess the effects of using different initial conditions, the area-mean values of normalized bias and correlation coefficients are compared for each basic variable for hindcast according to the four initial dates. The results have better performance when the initial date closest to the forecasting time is used in summer. On the seasonal scale, it is better to use four initial dates, where the maximum size of the ensemble increases to 672, mainly in winter. As the use of larger ensemble size, therefore, it is most efficient to use two initial dates for 60-days prediction and four initial dates for 6-months prediction, similar to the current Time-Lagged ensemble method.

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

Treatment of multiple gingival recessions with xenogeneic acellular dermal matrix compared to connective tissue graft: a randomized split-mouth clinical trial

  • Vincent-Bugnas, Severine;Laurent, Jonathan;Naman, Eve;Charbit, Mathieu;Borie, Gwenael
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • Purpose: The aim of this study was to compare the efficacy of the tunnel technique for root coverage using a new xenogeneic acellular dermal matrix vs. connective tissue grafting (CTG) for the treatment of multiple maxillary adjacent recessions (recession type 1) at 12 months postoperatively. Methods: This study enrolled 12 patients with at least 3 contiguous, bilateral, symmetrical maxillary gingival recessions (i.e., at least 6 recessions per patient). In total, 74 recessions were treated using the modified coronally advanced tunnel (MCAT) technique combined with a novel porcine-derived acellular dermal matrix (PADM) at 37 test sites or CTG at 37 control sites. The following clinical parameters were measured: recession height, clinical attachment level, width of keratinized tissue, probing depth, recession width, gingival thickness, mean root coverage (MRC), and complete root coverage (CRC). Comparisons between test and control groups were made for pain visual analog scale scores at 14 days. Results: At 12 months, the MCAT with PADM (test) yielded a statistically significant improvement in all clinical parameters studied. MRC was significantly higher on the control sides (80.6%±23.7%) than on the test sides (68.8%±23.4%). Similarly, CRC was 48.7%±6.8% on the control sides (CTG), in contrast to 24.3%±8.2% on the test sides (PADM). Statistically significant differences were observed in favor of the control sides for all clinical parameters studied. Nevertheless, the MCAT in adjunction with PADM was clearly superior at reducing mean and maximum patient-reported postoperative pain intensity and pain duration in the first week after surgery. Conclusions: The use of PADM to treat multiple recessions improved clinical parameters at 12 months, but these outcomes were nevertheless poorer than those observed for CTG. However, PADM reduced morbidity, particularly the pain experienced by patients.

Numerical Study of Structural Behavior of Underground Silo Structures for Low-and-Intermediate-level Radioactive Waste Disposal Facility (중저준위 방폐물 처분 사일로 구조물의 구조거동 수치해석 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2022
  • The construction of an underground silo structure was the first stage of erecting the Gyeongju low-and-intermediate-level radioactive waste disposal facility. The facility, completed in 2014, has a scale of 100 000 drums and is currently in operation. The underground silo structure, 25 and 50 m in diameter and height, respectively, consists of cylindrical (for storing waste packages) and dome parts. The dome is divided into lower (connected to the operation tunnel) and upper parts. The wall of the underground silo structure is an approximately 1-m-thick reinforced concrete liner. In this study, finite element analysis was performed for each phase of the construction sequence and operation of the underground silo structure. Two-dimensional axial symmetric finite element analysis was implemented using the SMAP-3D program. Three-dimensional finite element analysis was also performed to examine the reliability of the two-dimensional axial symmetric finite element model. The structural behavior of the underground silo structure was predicted, and its structural safety was examined.