• Title/Summary/Keyword: Scale efficiency change

Search Result 258, Processing Time 0.033 seconds

Numerical Analysis of Performance of Linear Compressor for the Stilting Cryocooler (스터링 냉동기의 선헝압축기 운전특성에 관한 수치해석적 연구)

  • 홍용주;박성제;김효봉;염한길;최영돈
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • The purpose of this study is to analyze the charging gas effect on the resonance and performance characteristics of the linear compressor for small scale FPFD Stirling refrigerator. To ensure high performance of FPFD type Stirling refrigerator, the operating frequency of the refrigerator should be around the natural frequency of compressor. The gas spring effect which is induced from Pressure change in cylinder due to motion of pistons has significant effect on the natural frequency of the compressor. The numerical results show the linear compressor has high natural frequency when the charging pressure of working fluid is high and the stroke of compressor, current, input power and efficiency of compressor were shown with different operating conditions.

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun;Choi, Don-Seong;Kim, Do-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.

Comparison of Piano Key and Rectangular Labyrinth Weir Discharge Efficiency

  • Anh Tuan Le
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.39-39
    • /
    • 2023
  • Nonlinear weirs, such as labyrinth and piano key weirs, are suitable methods to handle increased flood flows that may be expected due to climate change. Although specific physical models are considered to be an effective way of investigating fluid flows, simply conducting physical model tests is insufficient to fully comprehend the hydraulic and discharge characteristics of non-linear weirs. In this study, computational fluid dynamics algorithms have been used extensively to investigate complex flow physics instead of relying on reduced scale models. The discharge capacity of the piano key weir and the rectangular labyrinth weir is compared using a three-dimensional numerical model, which is validated by the available experimental data. The results confirm that piano key weir is more efficient than the rectangular labyrinth weir for a wide range of head water ratios. By analyzing the contribution of discharge over inlet, outlet and sidewall crests, the factor that make the piano key weir superior to the rectangular weir is the sidewall discharge.

  • PDF

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

Predicting Dynamic Response of a Railway Bridge Using Transfer-Learning Technique (전이학습 기법을 이용한 철도교량의 동적응답 예측)

  • Minsu Kim;Sanghyun Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2023
  • Because a railway bridge is designed over a long period of time and covers a large site, it involves various environmental factors and uncertainties. For this reason, design changes often occur, even if the design was thoroughly reviewed in the initial design stage. In particular, design changes of large-scale facilities, such as railway bridges, consume significant time and cost, and it is extremely inefficient to repeat all the procedures each time. In this study, a technique that can improve the efficiency of learning after design change was developed by utilizing the learning result before design change through transfer learning among deep-learning algorithms. For analysis, scenarios were created, and a database was built using a previously developed railway bridge deep-learning-based prediction system. The proposed method results in similar accuracy when learning only 1000 data points in the new domain compared with the 8000 data points used for learning in the old domain before the design change. Moreover, it was confirmed that it has a faster convergence speed.

A Randomized Clinical Trial of Local Acupoints Compared with Distal Acupoints in Chronic Neck Pain Patients (만성 경항통 환자에 대한 근위취혈과 원위취혈 침치료 효과 비교연구)

  • Kim, So-Jung;Jang, Jin-Young;Kim, Nam-Sik;Kim, Yong-Suk;Nam, Sang-Soo
    • Journal of Acupuncture Research
    • /
    • v.28 no.5
    • /
    • pp.57-64
    • /
    • 2011
  • Objectives : The purpose of this study is to compare the efficacy after acupuncture on local acupoints group and distal acupoints group for chronic neck pain. Design : A randomized, crossover clinical trial. Methods : From 15st, September 2010 to October 30th, 2010. 20 patients with chronic neck pain were randomly assigned to either group A or group B. Group A received acupuncture at local acupoints then after 1 week washout period acupuncture at distal acupoints. Group B received the treatment in reverse order. To evaluating efficiency and satisfaction, visual analog scale(VAS), neck disability index(NDI), cranio-cervical flextion test(C-CFT) and five-point likert scale were measured before and after each treatment. Results : Patients in local acupoints group experienced greater improvement than distal acupoints group in VAS. Both local acupoints group and distal acupoints group showed significant improvement in NDI but not in C-CFT and the NDI score change comparison between the two groups had no significance. Local acupoints group showed more effective than distal acupoints group on five-point likert scale. Conclusions : Local acupoints is more effective than distal acupoints in controlling pain in chronic neck pain.

Experimental Study of Flow Characteristics with Swirl Number on Dump Combustor (모형 가스터빈 연소기에서 스월수에 따른 유동 특성에 관한 실험적 연구)

  • Park, Jae-Young;Han, Dong-Sik;Kim, Han-Seok;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • The swirl flow applied for high efficiency and reduction of emission such as NOx, CO in a gas turbine engine makes recirculation zone by shear layer in the combustion chamber. This recirculation zone influences a decreasing flame temperature and flame length by burned gas recirculation. Also it is able to suppress from instability in lean-premixed flame. In this study, it was found that the swirl flow field was characterized as function of swirl number using PIV measurement in dump combustor. As increasing swirl number, a change of flow field was presented and recirculation zone was shifted in the nozzle exit direction. Also turbulent intensity and turbulent length scale in combustor were decreased in combustion. It has shown reduction of eddies scale with swirl number increasing.

Development of a Meso-Scale Distributed Continuous Hydrologic Model and Application for Climate Change Impact Assessment to Han River Basin (분포형 광역 수문모델 개발 및 한강유역 미래 기후변화 수문영향평가)

  • Kim, Seong-Joon;Park, Geun-Ae;Lee, Yong-Gwan;Ahn, So-Ra
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.160-174
    • /
    • 2014
  • The purpose of this paper is to develop a meso-scale grid-based continuous hydrological model and apply to assess the future watershed hydrology by climate change. The model divides the watershed into rectangular cells, and the cell profile is divided into three layered flow components: a surface layer, a subsurface unsaturated layer, and a saturated layer. Soil water balance is calculated for each grid cell of the watershed, and updated daily time step. Evapotranspiration(ET) is calculated by Penman-Monteith method and the surface and subsurface flow adopts lag coefficients for multiple days contribution and recession curve slope for stream discharge. The model was calibrated and verified using 9 years(2001-2009) dam inflow data of two watersheds(Chungju Dam and Soyanggang Dam) with 1km spatial resolution. The average Nash-Sutcliffe model efficiency was 0.57 and 0.71, and the average determination coefficient was 0.65 and 0.72 respectively. For the whole Han river basin, the model was applied to assess the future climate change impact on the river bsain. Five IPCC SRES A1B scenarios of CSIRO MK3, GFDL CM2_1, CONS ECHO-G, MRI CGCM2_3_2, UKMO HADGEMI) showed the results of 7.0%~27.1 increase of runoff and the increase of evapotranspiration with both integrated and distributed model outputs.

Effect of Controlled Light Environment on the Growth and Ginsenoside Content of Panax ginseng C. A. Meyer (광환경 조절이 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Jang, In Bae;Yu, Jin;Kweon, Ki Bum;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • Background: The photosynthetic efficiency cool-season, semi-shade ginseng is normal at low morning temperatures, but drops at high afternoon temperatures. Therefore, optimal plant performance would be ensured if it were possible to control daily light transmission rates (LTR). Methods and Results: Plants were grown in a controlled light environment that replicated 11 AM conditions and comparatively analyzed against plant grown under normal conditions. Growth in the controlled light environment resulted in a 2.81 fold increase in photosynthetic efficiency with no change in chlorophyll content, although LTR were high due to low morning temperatures. Increased aerial plant growth was observed in the ginseng plants adapted to the controlled light environment, which in turn influenced root weight. An 81% increase in fresh root weight (33.3 g per plant on average) was observed in 4-year-old ginseng plants grown in controlled light environment compared to the plants grown following conventional practices (18.4 g per plant on average). With regard to the inorganic composition of leaves of 4-year-old ginseng plants grown in controlled light environment, an increased in Fe content was observed, while Mn and Zn content decreased, and total ginsenoside content of roots increased 2.37 fold. Conclusions: Growth of ginseng under a favorable light environment, such as the condition which exist naturally at 11 AM and are suitable for the plant's photosynthetic activity creates the possibility of large scale production, excellent-quality ginseng.

A Study on the Tetrafluoroborate Decomposition Reaction and Removal of Fluoride Using Aluminum (알루미늄을 이용한 불화붕산염의 분해 반응 및 불소 처리에 관한 연구)

  • Joo, Hyun-Jong;Kim, Moon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.257-262
    • /
    • 2013
  • The fluorine-containing waste water tends to show a higher removal efficiency through the coagulative precipitation process with calcium. However the tetrafluoroborate produced from the etching process is difficult to remaval due to it's low reactivity with calcium. The objective of this study is improving the efficiency of fluoride ion removal in tetrafluoroborate through decomposing. Research on tetrafluoroborate decomposition depending on reaction pH, temperature, and aluminum dosage were conducted, using a laboratory-scale reactor. The result shows that the reaction of tetrafluoroborate with aluminum is faster with lower pH, higher water temperature, and higher Al/T-F (Aluminum/Total Fluoride) mole ratio. It is found that there was no big change in concentration after over 120 minutes of reaction. This study is to be able to improve the efficiency of tetrafluoroborate and fluoride wastewater treatment by using aluminum.