• Title/Summary/Keyword: Scale Tester

Search Result 73, Processing Time 0.016 seconds

Consolidation Characteristics & Consolidation Period of Dredged Soil by Considering Change of Strain and Stratum Thickness (변형률과 층 두께의 변화를 고려한 준설점토의 압밀특성과 압밀기간)

  • Cheong Gyu-Hyang;Kim Young-Nam;Ju Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.105-114
    • /
    • 2004
  • Consolidation characteristics have been investigated by using Rowe cell consolidation tester for dredged soil, which is more than two times as much as the liquid limit. To examine the effects of variation of water content on consolidation characteristic, tests were carried out varying the initial water content from $100\%\;to\;150\%.$ The results were compared with the consolidation characteristics of remolded clay. The test results showed that the hither the initial water content of dredged clay was, the more noticeable the non-linear behavior of e-log P curves occurred. The variation of the gradient was apparent to load stage 40kPa and became less apparent after load stage 80kPa on the e-log P curves. Ratio of compression index stayed within the range suggested by Mesri and variation of initial water content has hardly influenced the coefficient of consolidation. On the contrary, it was found that the magnitude of consolidation load affects the vertical coefficient of consolidation. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and the results were compared with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

The Long-Term Effects of High-Frequency Transcutaneous Electrical Nerve Stimulation(TENS) on the Lower Limb Spasticity and the Balance in the Chronic Stroke Patients (장기간 고빈도 경피신경전기자극이 뇌졸중 환자의 하지 경직 및 균형에 미치는 영향)

  • In, Tae-Sung;Cho, Hwi-Young;Lee, Sun-Hyun;Lee, Dong-Yeop;Lee, Jae-Kuck;Song, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1740-1748
    • /
    • 2011
  • The purpose of this study was to investigate effects of the long-term high-frequency transcutaneous electrical nerve stimulation(TENS) on the spasticity and the balance in chronic stroke patients. Twenty-six subjects with spasticity over lower limbs were allocated randomly into two groups under standard rehabilitation: (1) TENS group, (2) placebo-TENS group. TENS stimulation was applied on the both the gastrocnemius for 30 minutes, 5 days a week for 4 weeks(100 Hz, 0.25 ms, 2 times sensory threshold). The Modified Ashworth Scale(MAS) and Hand-held manual muscle tester were used to assess the ankle plantarflexor spasticity. Balance function under three conditions was measured by using force-plate and the amount of postural sway was assessed; in (1) the condition of standing with eyes opened, (2) with eyes closed and (3) the condition of standing on unstable surface with eyes opened. Both groups showed significant improvement in spasticity and balance function after treatment for 4 weeks(p<.05). Especially, TENS group showed a significant reduction of spasticity compared to placebo-TENS group(p<.05). These results suggested that additional stimulation of a long-term high-frequency TENS to standard rehabilitation induced an improved balance function and a spasticity reduction. The long-term application of high-frequency TENS will be an effective intervention for reducing spasticity and increasing balance ability in the chronic stroke patients.