• Title/Summary/Keyword: Scale Calculation

Search Result 697, Processing Time 0.025 seconds

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

Characteristic Analysis elf Large Grounding system by Using Reduced Scale Model Method (축소모델 기법을 이용한 대규모 접지계의 특성분석)

  • 장석훈;이재복;명성호;조연규;김점식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.162-167
    • /
    • 2004
  • The scale model grounding systems to study the behavior of grounding system in uniform soils have been designed and fabricated. Constructional details and instrumentation have been discussed. To verify the accuracy of the results obtained from the experimental tests, they have been compared with computer calculation results. Also, in order to assess the effectiveness of bonding two grounding systems, grounding grid conductors which were downsized as a scale factor of 100:1 were analyzed by using the scale model method. A profile of GPR(Grounding Potential Rise) of each case was measured. The scale model grounding system presented in this paper can be valuable tool to analyze the ground potential profile and ground resistance of practical grounding system.

A Study on the Effectiveness of the Exclusion Calculation for the Product Inclusive Design: A Case Study on the Evaluation of Electric Iron (제품의 포용적 디자인을 위한 Exclusion Calculation 평가 방법의 효용성 연구: 전기다리미 평가를 사례 연구로)

  • Zhang, Ji-Fa;Go, Jung-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.111-123
    • /
    • 2020
  • It is very important to ensure usability and inclusion in product design and development. Exclusion Calculation, developed by Simon Keates and P. John Clarkson at Cambridge University's Engineering Design Center, assesses the usability and inclusiveness of the product. In context of inadequate research on effectiveness of Exclusion Calculation, this study carried out the experimental evaluation of electric iron and discussed the effectiveness of the Exclusion Calculation from usefulness, accuracy of its evaluation results and the intuitiveness of the evaluation items. 11 designers used Exclusion Calculation in product evaluation and estimated the intuitiveness of 14 evaluation items in Exclusion Calculation by questionnaire. Then usefulness of the evaluation results was discussed and the accuracy of the evaluation results was analyzed by standard deviation. From the evaluation results, the research found that Exclusion Calculation could help designers identify the usability problems and the generality of usability problems related to the physical characteristics of the products, but it can not find the problems from logical aspect of using. In addition, the ambiguity of the evaluation scale in Exclusion Calculation leads to lower accuracy of the evaluation results. Most of evaluation items in Exclusion Calculation were easy to be identified and judged, while evaluation items related to cognitive abilities are less intuitive.

Development and Psychometric Evaluation of a Scale to Measure Health Behaviors of Adolescents (청소년의 건강행위 측정을 위한 도구개발 및 평가)

  • Shin, Yun-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.40 no.6
    • /
    • pp.820-830
    • /
    • 2010
  • Purpose: The purpose was to develop a preliminary scale to measure Korean adolescents' health behaviors through a qualitative approach, to evaluate the scale psychometrically, and to develop a final scale. Methods: Participants were 61 adolescents for qualitative interviews and 1,687 adolescents for the psychometric evaluation. Procedure included content analysis of interviews to identify health behavior categories for Korean adolescents, pre-test to confirm that preliminary scale items were understandable, content validity by an expert panel, development of the web-based computer-assisted survey (CAS), and psychometric analysis to determine reliability and validity of the final scale. Results: A final scale was developed for both paper-and-pencil and CAS. It consisted of 14 health behaviors (72 items), including stress and mental health (10), sleep habits (5), dietary habits (12), weight control (4), physical activity (4), hygiene habits (5), tobacco use (5), substance use (2), alcohol consumption (4), safety (4), sexual behavior (9), computer use (3), health screening (4), and posture (1). Conclusion: The scale's strong points are: 1) Two thirds of the final scale items are Likert scale items, enabling calculation of a health behavior score. 2) The scale is appropriate to Korean culture. 3) The scale focuses on concrete health behaviors, not abstract concepts.

Developing of Slope Calculation Algorithm using Cell-based Modeling (셀 기반 모델링을 이용한 경사계산 알고리즘 개발)

  • An, Sang-Hyun;Kang, Yong-Seok;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • Forest fire is expanded to large-scale forest fire based on topographic characteristics, particularly slope. This report addresses the currently available methods of calculation slope angle from a digital elevation model and develops a new method that circumvents a number of the shortcomings associated with other algorithms. The results of the comparison of five different slope angle calculation algorithms show that maximum uphill slope angle calculation is the proper method for the purpose of predicting forest fire hazard.

  • PDF

A Study on Revising Construction Cost Calculation for Road Paving Maintenance Work (도로포장 유지보수 공사비산정기준 개정에 대한 연구)

  • Oh, Jae-Hoon;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.155-156
    • /
    • 2020
  • Unlike new construction projects, road paving maintenance work shows large productivity discrepancies depending on the conditions of the worksite. The current construction cost calculation scheme, however, only provides daily construction volume categorized by work scope and scale: There are no detailed standards that can be implemented on various types of worksites. To develop standards that enable the calculation of appropriate construction costs by taking into account worksite conditions, the current study conducted on-site surveys and interviews. The on-site research and analysis revealed that location, construction width, the day's worksite lot, work scope, and construction objectives were found to cause differences in construction volume. In addition to the existing work scope and work scape variables, the current study added weight constants reflecting the daily work volume based on movement conditions at site and the size of the worksite lot. In this process, the current study found that even one type of construction project can have fifteen different levels of daily construction volume. Such detailed classification was deemed to enable the proper calculation of construction costs based on worksite conditions.

  • PDF

Design and Implementation of Flocking System for Increasing System Capacity with Hybrid Technique (시스템 성능 향상을 위한 하이브리드 기법을 적용한 플로킹 시스템 설계 및 구현)

  • Ryu, Nam-Hoon;Ban, Kyeong-Jin;Oh, Kyeong-Sug;Song, Seung-Heon;Kim, Eung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.26-34
    • /
    • 2008
  • Due to spread of movies or online games which are applied with computer animation techniques, we can easily see scenes where numerous characters appear. In the case of large-scale crowd animation, if one were to increase reality of the scene, features of system would be lowered, and if one were to increase functioning of system, reality of the scene would be lowered. In realizing large-scale crowd animation with seafloor environment as background, the paper analyzed and applied elements that affect behavioral types of fishes; and by using concept of crowd, the paper enabled each group or object to control their behavioral type; by comparing and contrasting real-time calculation method as calculation method for animation and hybrid calculation method which is mixed calculation method, the paper seeks to find a method that increases functioning of the system while also expresses natural scenes.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.