• Title/Summary/Keyword: Scalar Mixing

Search Result 44, Processing Time 0.02 seconds

Numerical analysis of two experiments related to thermal fatigue

  • Bieder, Ulrich;Errante, Paolo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.675-691
    • /
    • 2017
  • Jets in cross flow are of fundamental industrial importance and play an important role in validating turbulence models. Two jet configurations related to thermal fatigue phenomena are investigated: ${\bullet}$ T-junction of circular tubes where a heated jet discharges into a cold main flow and ${\bullet}$ Rectangular jet marked by a scalar discharging into a main flow in a rectangular channel. The T-junction configuration is a classical test case for thermal fatigue phenomena. The Vattenfall T-junction experiment was already subject of an OECD/NEA benchmark. A LES modelling and calculation strategy is developed and validated on this data. The rectangular-jet configuration is important for basic physical understanding and modelling and has been analyzed experimentally at CEA. The experimental work was focused on turbulent mixing between a slightly heated rectangular jet which is injected perpendicularly into the cold main flow of a rectangular channel. These experiments are analyzed for the first time with LES. The overall results show a good agreement between the experimental data and the CFD calculation. Mean values of velocity and temperature are well captured by both RANS calculation and LES. The range of critical frequencies and their amplitudes, however, are only captured by LES.

Turbulent mixing of suspended sediments in the Kelvin-Helmholtz instability using Large-eddy Simulation (켈빈-헬름홀츠 불안정성 내에서의 부유사 혼합 거동 모사)

  • Ku, Hyeyun;Hwan, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.386-386
    • /
    • 2015
  • 담수가 해수에서 흘러드는 하구에서는 성층이 관측되며 이것은 난류의 미세구조를 변화시키는 주요 원인으로 작용한다. 이러한 성층화 현상은 하구 내 부유사의 군집인 하구 최대혼탁수(Estuarine Turbidity Maximum, ETM)의 형성에 영향을 주게 된다. 본 연구는 성층의 하구 최대 혼탁수 생성 메커니즘에 관심을 두고 수치모델링을 활용한 미세 난류의 부유사 거동 분석에 초점을 두었다. 성층과 전단응력 사이의 난류 혼합을 대표하는 유동인 켈빈-헬름홀츠 불안정성(Kelvin-Helmholtz Instability)을 도입하고 성층 경계면 근처에서 부유사의 이송을 높은 레이놀즈수(Reynolds number) 유동에서 RANS(Reynolds-averaged Navier-Stokes Simulation)보다 다양한 규모의 에너지 획득이 가능하여 미세 난류 구조 재현에 장점을 갖는 Large-eddy Simulation(LES)를 활용하여 모사하였다. 여기에서, 부유사는 주위 유동의 물리적 특성 변화에 영향을 미치지 않는 Passive scalar로 가정하였으며 $6^{th}$-order Lagrangian 다항식 보간법을 적용하여 입자의 이동 속도를 계산하고 이를 시간에 대해 적분함으로써 이동 궤적을 추적하였다. 수치 모델 결과 Lock-exchange 유동 내에서 켈빈-헬름홀츠 불안정성이 발생함에 따라 경계면 주위에 위치한 부유사가 billow 내에서 트랩핑(trapping)되는 것을 보여주어 KH-billow 혹은 braids 내의 미세 난류에 의한 영향이 확인되었다. 본 연구에서는 LES를 활용하여 성층류 및 성층류 내의 부유사 혼합을 모사하여 난류의 정도에 따른 이동 궤적의 차이에 대해서 분석함으로써 성층의 난류 강도 저하에 따른 부유사의 군집으로의 영향에 대해 서술한다.

  • PDF

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.