• Title/Summary/Keyword: Scalable streaming network

Search Result 60, Processing Time 0.023 seconds

An SNR Scalable Video Coding using Linearly Combined Motion Vectors

  • Ryu, Chang-Hoon;Byoungjun Han;Park, Kwang-Pyo;Yoon, Eung-Sik;Lee, Keun-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.50-53
    • /
    • 2002
  • There are increasing needs to deliver the multimedia streaming over heterogeneous networks. When considering network environments and equipment accessed by user, delivery of video streaming must be scalable. There are many kinds of scalable video coding: spatial, temporal, SNR, and hybrid. The SNR scalable and spatial resolution, but different SNR quality with respect to layers. The 1-layer SNR scalable encoder produces SNR scalable video streams with ease. But, there is drift problem. Modified 1-layer approach does not have this problem but coding inefficiency, and is not MPEG-compliant. The present MPEG-compliant 2-layer encoder comes out to reduce coding rate. But it still use only base layer to encode whole layer. In this paper, we propose adaptive MPEG-compliant 2-layer encoder. Using linear combination algorithm, encoder use 1 motion vector to encode the sequences efficiently. By dong this, we can achieve the coding efficiency of SNR scalable coding.

  • PDF

A Network Adaptive SVC Streaming Protocol for Improving Video Quality (비디오 품질 향상을 위한 네트워크 적응적인 SVC 스트리밍 프로토콜)

  • Kim, Jong-Hyun;Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2010
  • The existing QoS mechanisms for video streaming are short of the consideration for various user environments and the characteristic of streaming applying programs. In order to overwhelm this problem, studies on the video streaming protocols exploiting scalable video coding (SVC), which provide spatial, temporal, and qualitative scalability in video coding, are progressing actively. However, these protocols also have the problem to deepen network congestion situation, and to lower fairness between other traffics, as they are not equipped with congestion control mechanisms. SVC based streaming protocols also have the problem to overlook the property of videos encoded in SVC, as the protocols transmit the streaming simply by extracting the bitstream which has the maximum bit rate within available bandwidth of a network. To solve these problems, this study suggests TCP-friendly network adaptive SVC streaming(T-NASS) protocol which considers both network status and SVC bitstream property. T-NASS protocol extracts the optimal SVC bitstream by calculating TCP-friendly transmission rate, and by perceiving the network status on the basis of packet loss rate and explicit congestion notification(ECN). Through the performance estimation using an ns-2 network simulator, this study identified T-NASS protocol extracts the optimal bitstream as it uses TCP-friendly transmission property and perceives the network status, and also identified the video image quality transmitted through T-NASS protocol is improved.

SVC-based Adaptive Video Streaming over Content-Centric Networking

  • Lee, Junghwan;Hwang, Jaehyun;Choi, Nakjung;Yoo, Chuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2430-2447
    • /
    • 2013
  • In recent years, HTTP adaptive streaming (HAS) has attracted considerable attention as the state-of-the-art technology for video transport. HAS dynamically adjusts the quality of video streaming according to the network bandwidth and device capability of users. Content-Centric Networking (CCN) has also emerged as a future Internet architecture, which is a novel communication paradigm that integrates content delivery as a native network primitive. These trends have led to the new research issue of harmonizing HAS with the in-network caching provided by CCN routers. Previous research has shown that the performance of HAS can be improved by using the H.264/SVC(scalable video codec) in the in-network caching environments. However, the previous study did not address the misbehavior that causes video freeze when overestimating the available network bandwidth, which is attributable to the high cache hit rate. Thus, we propose a new SVC-based adaptation algorithm that utilizes a drop timer. Our approach aims to stop the downloading of additional enhancement layers that are not cached in the local CCN routers in a timely manner, thereby preventing excessive consumption of the video buffer. We implemented our algorithm in the SVC-HAS client and deployed a testbed that could run Smooth-Streaming, which is one of the most popular HAS solutions, over CCNx, which is the reference implementation of CCN. Our experimental results showed that the proposed scheme (SLA) could avoid video freeze in an effective manner, but without reducing the high hit rate on the CCN routers or affecting the high video quality on the SVC-HAS client.

Switching Picture Added Scalable Video Coding and its Application for Video Streaming Adaptive to Dynamic Network Bandwidth

  • Jia, Jie;Choi, Hae-Chul;Kim, Hae-Kwang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.119-127
    • /
    • 2008
  • Transmission of video over Internet or wireless network requires coded stream capable of adapting to dynamic network conditions instantly. To meet this requirement, various scalable video coding schemes have been developed, among which the Scalable Video Coding (SVC) extension of the H.264/AVC is the most recent one. In comparison with the scalable profiles of previous video coding standards, the SVC achieves significant improvement on coding efficiency performance. For adapting to dynamic network bandwidth, the SVC employs inter-layer switching between different temporal, spatial or/and fidelity layers, which is currently supported with instantaneous decoding refresh (IDR) access unit. However, for real-time adaptability, the SVC has to frequently employ the IDR picture, which dramatically decreases the coding efficiency. Therefore, an extension of SP picture from the AVC to the SVC for an efficient inter-layer switching is investigated and presented in this paper. Simulations regarding the adaptability to dynamic network bandwidth are implemented. Results of experiment show that the SP picture added SVC provides an average 1.2 dB PSNR enhancement over the current SVC while providing similar adaptive functionality.

A Scalable Video Coding(SVC) and Balanced Selection Algorithm based P2P Streaming Technique for Efficient Military Video Information Transmission (효율적인 국방 영상정보 전송을 위한 확장비디오코딩(SVC) 및 균형선택 알고리즘 기반의 피투피(P2P) 비디오 스트리밍 기법 연구)

  • Shin, Kyuyong;Kim, Kyoung Min;Lee, Jongkwan
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.87-96
    • /
    • 2019
  • Recently, with the rapid development of video equipment and technology, tremendous video information is produced and utilized in military domain to acquire battlefield information or for effective command control. Note that the video playback devices currently used in the military domain ranges from low-performance tactical multi-functional terminals (TMFT) to high-performance video servers and the networks where the video information is transmitted also range from the low speed tactical information and communication network (TICN) to ultra-high speed defense broadband converged networks such as M-BcN. Therefore, there is a need for an efficient streaming technique that can efficiently transmit defense video information in heterogeneous communication equipment and network environments. To solve the problem, this paper proposes a Scalable Video Coding (SVC) and balanced selection algorithm based Peer-to-Peer (P2P) streaming technique and the feasibility of the proposed technique is verified by simulations. The simulation results based on our BitTorrent simulator show that the proposed balanced selection scheme outperforms the sequential or rarest selection algorithm.

Adaptation for Object-based MPEG-4 Content with Multiple Streams (다중 스트림을 이용한 객체기반 MPEG-4 컨텐트의 적응 기법)

  • Cha Kyung-Ae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.3
    • /
    • pp.69-81
    • /
    • 2006
  • In this paper, an adaptive algorithm is proposed in streaming MPEG-4 contents with fluctuating resource amount such as throughput of network conditions. In the area of adaptive streaming issue, a lot of researches have been made on how to represent encoded media(such as video) bitstream in scalable way. By contrast, MPEG-4 supports object-based multimedia content which is composed of various types of media streams such as audio, video, image and other graphical elements. Thus, it can be more effective to provide individual media streams in scalable way for streaming object-based content to heterogeneous environment. The proposed method provides the multiple media streams corresponding to an object with different qualities and bit rate in order to support object based scalability to the MPEG-4 content. In addition, an optimal selection of the multiple streams for each object to meet a given constraint is proposed. The selection process is adopted a multiple choice knapsack problem with multi-step selection for the MPEG-4 objects with different scalability levels. The proposed algorithm enforces the optimal selection process to maintain the perceptual qualities of more important objects at the best effort. The experimental results show that the set of selected media stream for presenting objects meets a current transmission condition with more high perceptual quality.

  • PDF

Multi-channel Adaptive SVC Video Streaming with ROI (ROI를 이용한 H.264 SVC 에서의 다중 채널 네트워크 비디오 전송 기법)

  • Lee, Jung-Hwan;Ryu, Eun-Seok;Yoo, Hyuck
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • This paper proposes the mechanism which improves the qualify of video on a limited network bandwidth by applying the ROI technique to an H.264 Scalable Extension technique. The network environment assumed in this parer is the next generation network convergence environment in which the mobile device has one or more network interfaces. Therefore, we allocate the priority to video packets as the hierarchy structure of H.264 SVC-encoded video stream and ROI information, and transmit those packets over appropriate network channel for using those multiple network interfaces. This paper shows two experiments first one is extracting and allocating the video stream on an appropriate network channel, second one is unequal packet transmission by allocated priorities (e.g. ROI). Performance evaluations show that this approach delivers an improved decoded video quality when compared with conventional transmission schemes, especially on device which has multiple network interfaces.

Performance Evaluation of Differentiated Services to MPEG-4 FGS Video Streaming (MPEC-4 FGS 비디오 스트리밍에 대한 네트워크 차별화 서비스의 성능분석)

  • 신지태;김종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.711-723
    • /
    • 2002
  • A finer granular scalable (FGS) version of ISO/IEC MPEG-4 video streaming is investigated in this work with the prioritized stream delivery over loss-rate differentiated networks. Our proposed system is focused on the seamless integration of rate adaptation, prioritized packetization, and simplified differentiation for the MPEG-4 FGS video streaming. The proposed system consists of three key components: 1) rate adaptation with scalable source encoding, 2) content-aware prioritized packetization, and 3) loss-based differential forwarding. More specifically, a constant-quality rate adaptation is first achieved by optimally truncating the over-coded FGS stream based on the embedding rate-distortion (R-D) information (obtained from a piecewise linear R-D model). The rate-controlled video stream is then packetized and prioritized according to the loss impact of each packet. Prioritized packets are transmitted over the underlying network, where packets are subject to differentiated dropping and forwarding. By focusing on the end-to-end quality, we establish an effective working conditions for the proposed video streaming and the superior performance is verified by simulated MPEG-4 FGS video streaming.

myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

  • Ke, Chih-Heng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.379-394
    • /
    • 2012
  • The ever-increasing demand for H.264 scalable video coding (H.264/SVC) distribution motivates researchers to devise ways to enhance the quality of video delivered on the Internet. Furthermore, researchers and practitioners in general depend on computer simulators to analyze or evaluate their designed network architecture or proposed protocols. Therefore, a complete toolset, which is called myEvalSVC, for evaluating the delivered quality of H.264/SVC transmissions in a simulated environment is proposed to help the network and video coding research communities. The toolset is based on the H.264 Scalable Video coding streaming Evaluation Framework (SVEF) and extended to connect to the NS2 simulator. With this combination, people who work on video coding can simulate the effects of a more realistic network on video sequences resulting from their coding schemes, while people who work on network technology can evaluate the impact of real video streams on the proposed network architecture or protocols. To demonstrate the usefulness of the proposed new toolset, examples of H.264/SVC transmissions over 802.11 and 802.11e are provided.

Selection of Scalable Video Coding Layer Considering the Required Peak Signal to Noise Ratio and Amount of Received Video Data in Wireless Networks (무선 네트워크에서 요구되는 평균 최대 신호 대 잡음비와 수신 비디오 데이터양을 고려하는 스케일러블 비디오 코딩 계층 선택)

  • Lee, Hyun-No;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • SVC(Scalable Video Coding), which is one form among video encoding technologies, makes video streaming with the various frame rate, resolution, and video quality by combining three different scalability dimensions: temporal, spatial, and video quality scalability. As the above SVC-encoded video streaming consists of one base layer and several enhancement layers, and a wireless AP(Access Point) chooses and sends a suitable layer according to the received power from the receiving terminals in the changeable wireless network environment, the receiving terminals supporting SVC are able to receive video streaming with the appropriate resolution and quality according to their received powers. In this paper, after the performance analysis for the received power, packet loss rate, PSNR(Required Peak Signal to Noise Ratio), video quality level and amount of received video data based on the number of SVC layers was performed, an efficient method for selecting the number of SVC layer satisfying the RSNR and minimizing the amount of received video data is proposed.