• Title/Summary/Keyword: Sb2Te3

Search Result 161, Processing Time 0.025 seconds

Effect of a surfactant on $Sb_xTe_y$ thin films prepared by electrodeposition ($Sb_xTe_y$ 전착에 미치는 계면활성제의 영향)

  • ;Park, Mi-Yeong;Im, Jae-Hong;Lee, Gyu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.154-154
    • /
    • 2011
  • 본 연구에서는 Sb-Te 박막을 전기화학적 방법으로 전착하여 조성 및 전기적 특성을 분석하였다. $Sb_2Te_3$ 박막은 Sb(III):Te(IV) 농도비가 1:3, 인가된 전위값이 -0.15V vs. SCE 일 때 화학양론을 만족시켰다. 그러나 박막의 표면이 거칠고 균일성이 좋지 못하여 계면활성제 CTAB(cety1 trimethy1 ammonium bromide)를 첨가하여 도금용액의 조성비 및 도금전위를 제어하여 화학양론을 만족시키는 고품위 Sb-Te 박막을 제조하였다.

  • PDF

Properties $(Bi,Sb)_2(Te,Se)_3$-based Thermoelectrics Prepared by the Extrusion-Sintering Process (압출-소결법으로 제조된 $(Bi,Sb)_2(Te,Se)_3$계 열전재료의 특성)

  • Ji, Cheol-Won;Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.520-527
    • /
    • 1999
  • As a new approache(extrusion-sintering process) to fabricate the thermoelectric materials, it has been at tempted to extrude and sinter the powders simultaneously. It was possible to produce the highly dense <$(Bi,Sb)_2(Te,Se)_3$-based thermoelectrics with sound surface appearances and microstructures by adjusting the process variables. For the p-type materials, the Seeback coefficient was increased with the amount of Te dopants, and the thermoelectric figure of merit appeared to be $2.5\times10^{-3}/K$ at room temperature when doped with 3 at % Te. The n-type specimen doped with 0.16 mol% $SbI_3$ showed the thermoelectric figure of merit of $1.8\times10^{-3}/K$. In both p-type an 우-type materials, the carrier mobility an the thermoelectric figure of merit parallel to the extrusion direction were higher than those perpendicular to it.

  • PDF

Properties of GST Thin Films for PRAM with Composition (PRAM 용 GST계 상변화 박막의 조성에 따른 특성)

  • Jang Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

Electrical and Thermoelectric Properties of $\textrm{SbI}_{3}$-doped 85% $\textrm{Bi}_{2}\textrm{Te}_{3}$-15% $\textrm{Bi}_{2}\textrm{Se}_{3}$ Thermoelectric Semiconductor ($\textrm{SbI}_{3}$를 첨가한 85% $\textrm{Bi}_{2}\textrm{Te}_{3}$-15% $\textrm{Bi}_{2}\textrm{Se}_{3}$ 열반도체의 전기적 특성과 열전 특성)

  • Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong;Yu, Byeong-Cheol;Hwang, Chang-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.413-418
    • /
    • 1998
  • Electrical and Thermoelectric Properties of$ SbI_{3}$-doped 85% 85% $BiTe_{2}$$Se_{3}$ 단결정에서 전하 이동에 대한 살란인자는 0.1이었으며, 전자이동도와 정공이동도의 비($\mu_{e}$ /$\mu_{h}$ )는 1.45이었다. $SbI_{3}$의 첨가량이 증가할수록 전자 농도의 증가로 Seebek 계수와 전기비저항이 감소하며, Seebeck 계수와 전기비저항이 최대값을 나타내는 온도가 고온으로 이동하였다. $SbI_{3}$를 첨가한 85%$Bi_{2}$$Te_{3}$단결정에서 성능지수의 최대값은 $SbI_{3}$를 0.1 wt%첨가한 조성에서 $2.0 x 10^{-3}$ K이었다.

  • PDF

Thermoelectric Properties of CoSb3-yTey Prepared by Encapsulated Induction Melting (밀폐유도용해로 제조한 CoSb3-yTey의 열전특성)

  • Kim, Mi-Jung;Shim, Woo-Seop;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.412-415
    • /
    • 2006
  • Te-doped $CoSb_3$ was prepared by the encapsulated induction melting, and its doping effects on the thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the subsequent annealing at 773 K for 24 hrs. Tellurium atoms acted as electron donors by substituting antimony atoms. Thermoelectric properties were remarkably improved by the appropriate doping. Dimensionless figure of merit was obtained to be 0.83 at 700K for the $CoSb_{2.8}Te_{0.2}$ specimen.